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ABSTRACT Decay of fluorescence polarization after an impulsive excitation is corre-
lated with wobbling motion of fluorescent molecules in membranes. The motion is
characterized by two parameters, a "wobbling diffusion constant" and a "degree of
orientational constraint" both of which can be determined directly from experimen-
tally obtained decay. Detailed discussion, including theoretically calculated time-
courses of polarization decay, is given for several types of molecules embedded in
lipid bilayers; these types cover a large part of fluorescent probes available at present.
The theory is useful for the analysis of fluorescence polarization decay in any system
where the orientation of fluorophore is restricted by the surrounding structure.

INTRODUCTION

The so-called nanosecond fluorescence polarization technique has enabled us to follow
the rotational motion of molecules in the nanosecond range (1-3). Unlike classical
polarization studies using steady-state excitation, this time-dependent measurement
readily resolves complex motions such as rotation of asymmetric or flexible molecules
in solution (1, 4). Although most applications of this technique have concerned the
the size or the conformation of macromolecules in solution, its potential usefulness
lies in the determination of the dynamic structure of higher systems, e.g. biomem-
branes.

In membranes, several nanosecond experiments to date (5-8) indicate a general pat-
tern: when fluorescent molecules embedded in membranes are excited by a pulse of
polarized light, the polarization of emitted fluorescence is maximal at the moment of
excitation and decays to a stationary value after a certain period of time. This pat-
tern suggests that molecules in membranes exhibit wobbling motions rather than free
rotation. The rate of the polarization decay reflects the frequency of fluctuation of
molecular orientation in the membrane, while the stationary value reflects the orien-
tational constraint imposed by neighboring molecules. Thus we can infer the dynamics
of molecular interactions, essential for the understanding of structure and function
of biological membranes.

This article describes a theory that allows a quantitative interpretation of polariza-
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tion decay in membrane in terms of a "wobbling diffusion constant" and a "degree of
orientational constraint." The theory deals with suspensions of membranes (intact or
ghost cells, liposomes, etc.), because precise measurements can readily be made on
macroscopic suspensions (7). The primary system considered is that of lipid bilayers
containing fluorescent molecules which may be lipid analogues or (labeled) membrane
proteins.
The description of the theory begins with the introduction of a general formalism

in which fluorescence anisotropy, a measure of the degree of polarization, is correlated
with an evolution function that describes the rotational motion of the fluorescent
molecules. Then the formalism is adapted to membrane suspension, considered to be
equivalent to an ensemble of planar membrane segments. The wobbling diffusion
constant and the degree of orientational constraint characterize the evolution function
defined within each segment. Finally, simple but well-defined models are presented to
describe several possible modes of wobbling motion in membranes; interpretation of
experimental data is straightforward and clear-cut when one of these models applies.
An example of application, the dynamic structure of lipid bilayers, is analyzed by the
theory. The concluding section describes the broad applicability of this theory.

FLUORESCENCE ANISOTROPY OF A SYSTEM
ISOTROPIC AS A WHOLE

The system we consider in this article is a suspension of membranes that contain
fluorescent molecules. A distinct feature of such a system is that it is isotropic as a
whole. In other words, the rotation of the whole system in space does not affect the
result of an observation. In this section, we develop a formal theory of fluorescence
anisotropy applicable to any such isotropic system.

First we adopt the following convention: a letter printed in boldface type denotes
a unit vector, with which we specify a direction in space; an integration such as f dp
represents f sin adadf, where a and ,B are the polar and azimuthal angles of i
with respect to some fixed direction.
Taking mutually orthogonal unit vectors, t,, e in space (see Fig. 1), we excite a

sample with a pulsed light polarized in the direction of e. Fluorescence intensity com-
ponents polarized in t- and f-directions, I(t) and I,(t), are observed in the direction
of t as functions of time t after the excitation. We define the fluorescence anisotropy
r(t) by

r(t) = [I.(t) - I(t)][I,(t) + 2I(t)].(I

Now we consider a fluorescent molecule in the sample. Let p0 and Pe be the di-
rections of the transition moment corresponding to the absorption of the excitation
light and the emission of fluorescence, respectively. We assume a monochromatic
excitation, whereupon is and p& are definite directions in the molecule and make a
fixed angle X. Note that the set Psa,, p completely defines the orientation of the
molecule in space (the case X = 0 can be included as a limit).
The molecule above, if in its excited state, contributes to the fluorescence intensity
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FIGURE 1 Geometry of the system. Excitation light is polarized in the direction of e. Fluores-
cence is observed along q. The two vectors u, and ie represent the directions of absorption and
emission transition moments of a fluorophore in the sample.

component If in proportion to (e * Pe)2. Thus

I(t) = K(t) <(e >e)2> (2)

where K(t) a exp (-t/T) represents the decay of the number of molecules in the ex-
cited state, r being the lifetime, and < >, denotes the average over all the excited
state molecules. Similarly,

I(t) = K(t) <(t _ ;e)2 >1, I9(t) = K(t) <(71 *Le)2 > (3)

For our isotropic sample, symmetry requires the following relation:

Ij(t) = I,,(t) = 'K(t) <1_I f#e2 (4)

Substituting Eqs. 2 and 4 into Eq. 1, we obtain

r(t) = <M[3(E 1e)2 _ 1] >t <P2( _ #e) >, (5)

where P2 is the Legendre polynomial of order 2.
To calculate the average in Eq. 5, let us introduce a distribution function W(;&a, y&eq t),

the probability that we would find a molecule with orientation Pa, ILej in the sample
at time t regardless of whether it is in the excited state. The function W is normalized
such that

f W(a yLe t) d, dye = 1. (6)
For the evolution of Wwith time, we define G(;&s, fil, t' Pa, Pe, t) as the probability that
amolecule with orientation J;&a ;&'I at time t' will rotate into a new orientation $P&a, AeI
by time t. Thus,
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W(jia, ;&e, t) = ffW(J&a'',JL t') G(pa, , t' ;a, pe, t) djda.d(7)
Here we understand that both W and G contain a factor 6(P,a - fle - cos X) which as-
sures the fixed angle between the two moments. For the isotropic sample, stationary
distribution W5 is given by

WS(paLe) = (1/87r2) (La6ge - cos X). (8)
Now Eq. 5 can be rewritten as follows:

r(t) = ffj P2(e - ye) 3(e _ ))2Ws(;),G(,,L,Ge(°', gas yes t) d dye. d5La dIe. (9)

Here, at time 0, the polarized excitation light selectively excites the molecules in sta-
tionary distribution W' in proportion to 3( pa)2, where the factor 3 assures a unit ex-
citation; the product 3(e 4)2 WsG, upon integration with respect to &a and 1&', yields
the probability that a molecule in the excited state has the orientation -a.s, ye} at time t.

Because of the isotropic nature of the sample, r(t) does not depend on the direction
of e in space. Therefore, we can replace the right-hand side of Eq. 9 by the average
over e:

r(t) = fffff P2(E *e)3(e eLa)2Ws(LlaI4)47r

G(;&.',;yes, Pa, yes t) dIA dyedL&dP , de. (10)
We first perform the integration with E, making use of the addition theorem:

P2(E( -e) = P2(f -A)P2(P0 is)+ 2 -is)
+ TIP2(* p2(&a - JLe) cos 2(0 - %'), (11)

where P2 and P2 are the associated Legendre polynomials and X and &' are the
azimuthal angles of e and y&e around ja'. The second and third terms in Eq. 11
drop on integration with X5, leaving

r(t) = 0.4 fJJffP2(a, - Fe) Ws(;&ap &e,) G((,La', I1 0 | Ia,I.;e, t) d;iaL d;LdadaLed ( 12)

Thus the fluorescence anisotropy r(t) is determined by the evolution function G of
the sample. In particular, G reduces to 6(pa - ,sa)6(ise - p.e) for t = 0. Hence the
substitution of Eq. 8 into 12 leads to the familiar expression of the limiting anisotropy
rO.

rO r(0) = 0.4P2 (cosX). (13)

In the following sections, we often refer to the special cases: (a) ga and p&e are approxi-
mately parallel, i.e. X O 0, ro - 0.4; (b) W(p0.,ye, t) is independent of ;Pa, i.e. the
probability of a particular orientation depends only on p&. Case b applies when
the fluorescent molecule under consideration is axially symmetric around ALe. In both
these cases, Eq. 12 is further rewritten as follows. We again expand P2(1a - p&) as

P2(;a #Ae) = P2(Sa ILAD)P2(X yAe) + AP2(pa ye) 22(Lj ye) cos (v -

+ AP2( A 2* e-)P2(p1* pe)cos2(I - {/) (14)
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where 6 and i1' are the azimuthal angles of u4 and ye around ye. In case a the sec-
ond and the third terms in Eq. 14 are clearly negligible. In case b, these terms vanish
on ingration with respect to if1, because JfG(14, yes, 0 a, yes t) dpa in Eq. 12 does
not depend on A1. For both cases, therefore, we obtain

r(t) = roJP2(4 )JWS(p)G(, 0 Pe, t) d;& die, (15)

where

WS(pP) - Ws(p' 4') dpa, (16)

G(gu oI ye,t) - Ws(p)ilJWs(a, &G()G(sa', ° a,yes t) d&a dPa (17)

This expression is particularly useful for case b, because G may be regarded as the
evolution function for W(Pe, t):

W(ieq t) =-fW(iLa, e,t)dPa = fJW(s4e,t')G(1, t' ge,t)dye(e18)

FLUORESCENCE ANISOTROPY OF A MEMBRANE SUSPENSION

It has been shown in the preceding section that the evolution function G(&a1,4 ,t,
Pag ye, t) completely determines the fluorescence anisotropy r(t) of an isotropic sam-
ple. If the distribution function W(Pa,IyeL, t) satisfies a suitable differential equation,
G can be obtained as the Green function of the equation. This is the case for fluores-
cent molecules suspended in an isotropic medium, where W is governed by a simple
diffusion equation. The corresponding expression for r(t), for the most general case of
the completely asymmetric molecule, has been given by Tao (9), whose results actually
are confined to cases a and b above, and by Belford et al. (10).
When fluorescent molecules are embedded in membranes, however, the probability

of reorientation gas, 14je pi;a,p e Iefor a particular molecule depends on the orienta-
tion of the membrane in which the molecule is placed. Hence the distribution function
W(Pa, Pe, t) defined over the whole sample no longer satisfies a simple differential
equation. In this section, therefore, we correlate r(t) with a distribution function de-
fined within a particular segment of membrane in which the motion of the fluorescent
molecules can be described by a well-defined differential equation.
We suppose that a suspension of membrane is equivalent to an ensemble of planar

membrane segments. Within a segment designated by its normal n, we define the dis-
tribution function of the orientation of the fluorescent molecules w.(pa, ise, t) as well
as its evolution function g*(14, yest' Pa, Pe, t) and the stationary distribution
wN(pa, Pe). These functions satisfy equations analogous to Eqs. 6 and 7. Note, how-
ever, that the environment of the molecules is not isotropic in the membrane segment,
so that w3 is no longer given by Eq. 8. Corresponding quantities with circumflexes are
defined as in Eqs. 16-18.
Now the product W5G in Eq. 12 can be replaced with the average of wsg. over n:

r(t) = (1/N) E [0.4 ffffP2(;& * Ae)W5(AP,PtA)
n

g(lSs#s °I las 1est) dsa' d;&' d;&a dAe. 19)

KINOSITA, KAWATO, AND IKEGAMI Fluorescence Polarization Decay in Membranes 293



Here we have assumed that all N segments contain an equal number of fluorescent
molecules. We also have neglected the rotation of the whole segment and the trans-
lational motion of the molecule out of a segment, both very slow processes as com-
pared to the fluorescence lifetime.

Because all the segments are essentially identical with each other, wS or g, for
different n's are related simply by rotation in space. Therefore, all terms in Eq. 19 be-
come identical after integration. Thus we can choose any particular segment for the
calculation of r(t):

r(t) = 0.4 fJfff%IP2( ,)Ws(Ie)g( le,01 lAflt)dPldi.LediLadle. (20)
Here we have omitted the subscript n, which merely indicates that the probability func-
tion is defined within a membrane segment, and does not refer to the whole suspen-
sion. For cases a and b, we obtain similarly

r(t) = rO ff P2(e * e) *S(/)g(I 0 wle, t) dA'dAe. (21)

Eqs. 20 or 21 allow us the calculation of r(t) from a plausible mathematical model of
the wobbling motion in the membrane. This theoretical r(t) may in turn be compared
with the experimentally obtained r(t).

For example, we may assume that the wobbling motion is described as a diffusion in
a potential. If the molecule is symmetric around fies i.e. in case b, the master equa-
tion will be Smoluchowski's equation (see e.g. ref. 11) of the form

a, (;le, 1)/Ot = diVe[Dw(pe) gradeiW(Ae, t) + w(Ae, t)fw(Pe)' gradle V(pe)], (22)
where the differentiation with ye is carried out on a unit sphere, DW and f, are the dif-
fusion constant and the frictional coefficient of the wobbling motion, respectively, both
of which may depend on the orientation ye, and V is the potential. The functions
w andg in Eq. 21 are, respectively, the stationary solution and the Green function of
the differential Eq. 22. In particular, Einstein's relation DJf, = kT, where k is the
Boltzmann constant and T the absolute temperature, leads to

WS(0le) = const x exp [-V(pe)/kT]. (23)

For molecules without the symmetry, the master equation will include the differentia-
tion with p&, and DW as well as f,-' should be regarded as tensors.

THE WOBBLING DIFFUSION CONSTANT AND THE DEGREE OF
ORIENTATIONAL CONSTRAINT

In the above, the problem has been the calculation of r(t) from a presumed differential
equation. The information we obtain from an experiment, therefore, depends on the
choice of a particular mathematical model. However, as we see below, essential infor-
mation can be extracted directly from an experimental r(t). In showing this, we con-
fine ourselves to cases a and b for the sake of clear insight. An example of generaliza-
tion will be given in the next section.
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First we let t oX in Eq. 21. Because g(#,O0 Pe, ao) is identical with W'(gtu), we
obtain

r,_ r(cm) = ro ff P (24)

Now we again expand P2(p4-.gs) as P2(n -Pt)P2(n-Pe) +........ Since w3 is ex-
pected to be symmetric around the normal n of the membrane, only the first term re-
mains after integration. Thus

r.O r= [f P2(n -Ie) S(I)de1]2. (25)

This quantity obviously is a measure of the anisotropy of the stationary distribution
w :r,I/ro is maximal when the emission transition moments Ae are preferentially
aligned along the normal n; it becomes null for completely isotropic distribution. Thus
it may be termed the degree of orientational constraint. When Eq. 22 applies, r,1/rO
measures the "width" of the potential V in which the molecule wobbles around, as is
readily seen from Eq. 23.
Next we consider the region t - 0. The wobbling diffusion constant may be de-

fined as

Dw(;Xe) - imn I fW,2A(A,, 0|t)dI, (26)s-o 4t

where c denotes the angle between P' and Pe. The integral in the right-hand side is
the average of w2 at time t. Thus the definition is analogous to the ordinary definition
of a rotational diffusion constant. In fact, if the molecule is axially symmetric around
Pe, i.e. in case b, Dw(Ae) coincides with the rotational diffusion constant around an
axis perpendicular to the symmetry axis, and is identical with the one defined in Eq. 22.
For a molecule of arbitrary shape, Dw(e) corresponds to a weighted average of the
principal diffusion constants. In any case, Dw may depend on the orientation accord-
ing to the nature of particular membrane.
For small t, the angle of rotation co is also small. Therefore, we can use the series

expansion

P2(I#e-Pe) = ~(3cos2W - 1) W21- (27)

in Eq. 21. Thus

r(t)lO 1 fJf W2Wi(AeA)g(pe,O Ile,t)d&edIe
- 1 -6tf e e

I - 6<DW>t. (28)

Here <Dv> is the wobbling diffusion constant averaged over the stationary dis-
tribution wJ. The value of < Dw > can be obtained directly from the initial slope of
a measured r(t).

In this way we can infer the dynamical structure of the membrane once r(t) is ex-
perimentally determined. The quantity r I/ro tells us the degree of confinement of the
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orientation of the fluorescent molecule imposed by the structure of the membrane.
The initial slope gives us the average "speed" with which the molecule wobbles within
the confined angle.

FLUORESCENT PROBES IN LIPID BILAYERS-SIMPLE MODELS

In this section, we proceed into a more detailed discussion based on simplified mathe-
matical models. We concentrate on the system of fluorescent probe molecules dis-
persed in lipid bilayer membranes. In this system, we expect that the longest axis of
the fluorescent molecule is more or less preferentially aligned along the normal of the
membrane, i.e. parallel to the long axis of the lipid molecules. As to fluorescent probes,
we consider the following three types, which cover a large part of useful probes: i) Rod-
shaped molecule with emission transition moment parallel to the long axis. Exam-
ples are 1 ,6-diphenyl- 1,3,5-hexatriene (DPH), 2-p-toluidinylnaphthalene-6-sulfonate
(TNS), etc. ii) Rod-shaped molecule with emission moment perpendicular to the long
axis. Examples are 12-(9-anthroyl)stearic acid (AS), N-octadecylnaphthyl-2-amino-6-
sulfonic acid (ONS), etc. iii) Disk-shaped molecule with both absorption and emission
moments in the plane of the disk. Examples are perylene, pyrene, etc.

Rod-Shaped Molecule with Emission Moment Parallel to the Long Axis

Obviously case b applies to this type of molecule. Therefore, Eqs. 25 and 28 hold
irrespective of ro, or of the excitation wavelength. An explicit expression of theoretical
r(t) may be obtained by solving Eq. 22, once the wobbling diffusion constant D" and
the potential Vare given as functions of the orientation Pe.
The simplest model will be the following "wobbling-in-cone" model: the orientation

p, (the long axis) is confined within a cone around the normal n of the membrane
(see Fig. 2) and fluctuates within this cone with a wobbling diffusion constant, Dw,

I-I

FIGURE 2 Wobbling-in-cone model. The emission transition moment,e wobbles around uni-
formly in the cone.
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FIGURE 3 Parameters of the wobbling-in-cone model (Eqs. 31 and 33 in text).

which is constant throughout the cone. If we let 0 and 4 be the polar and azimuthal
angles ofp, with respect to n (Fig. 2), Eq. 22 reduces to

a ) =D LsinO d sineO + sin2' d (29)

(0 <. < Omax)
with the boundary condition

adw-(0, X, t)lo = 0 atO = Omax. (30)

The Green function g and the stationary solution Ws of the above equation are
readily obtained by the method of variable separation.' The resultant expression of
r(t) is of the form

r(t)rO= A,exp (- Dwt/ai), (31)
i-I

where A, and ai are constants which depend only on 0max. In particular, the stationary
term A ,which corresponds to ao = 0oois given by

A = r/rO = [ cosSOmax(1 + cOS Omax)]2. (32)

Values of several other constants are shown in Fig. 3.

' lWooh0I° o
t)

P -
P

(cos ') P' (cos ) exp im(o 0') exp P-(P + 1)Dw, where
P'

are
Legendre's associated functions which satisfy the boundary condition 30, and w,S(0,) = 1/2ir(1 -

cosOmax).
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1oD.
FIGURE 4 Theoretical curves of fluorescence anisotropy decay for the wobbling-in-cone model.
The curves from top to bottom correspond to cone angles Omax of 36.9°, 53. 1, and 66.4°. Dashed
lines are approximate expressions given by Eq. 33. D,, is the wobbling diffusion constant.

Examples of the curve r(t)/ro are illustrated in Fig. 4. In all cases the initial slope is
equal to 6DW, as is expected from Eq. 28. In the figure, the broken lines represent an
approximate expression

r(t)/ro = A . + (1 - A ) exp (-Dwt/<u >), (33)

where

<KF> =JE Aiau. (34)
i# X

The simple expression 33 is a good approximation to the theoretical r(t)/ro of the
wobbling-in-cone model. The quantity <v > /Dw is the time with which the initially
photoselected distribution of orientations approaches the stationary distribution. As is
seen in Fig. 3b, this apparent relaxation time is roughly proportional to (ro - r, )/ro.
Naturally, the relaxation is slower for the wider cone.

Rod-Shaped Molecule with Emission Moment Perpendicular to the Long Axis
In this case, the stationary distribution of emission moment ye is expected to be
maximal in the plane of the membrane. The principal mode of motion of i&e will be
"'spinning" around the long axis of the molecule, on which the effect of wobbling mo-
tion of the long axis is superposed. Eqs. 25 and 28 as well as the following apply only
to the case where ro - 0.4.
A simple model for this type of molecules is the one in which the stationary dis-

tribution of p., is uniform over the equatorial band Omi. < 0 < ir - Omin-, i.e. the out-
side of the cone shown in Fig. 2 (0max in the figure should, in this case, read .min). For
this model, Eq. 25 becomes

r. rO = ['(I - cos20min)]2* (35)

In general, the rotational diffusion constant of this molecule around the axis per-
pendicular to the long axis is different from the one corresponding to spinning around
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FIGURE 5 Parameters of the spinning-in-equatorial-band model (Eqs. 36 and 37 in text).

the long axis. If, in the above model, we further simplify the situation to equate both
diffusion constants to D5, the spinning diffusion constant, the simple diffusion equation
of the form 29 holds in the region Otjin < 0 < Xr - _*in. This rather rough approxima-
tion is vindicated to some extent for molecules like AS or ONS whose backbone is con-
sidered flexible.
Under the above assumption, the theoretical expression of r(t) is again of the form

00

r(t)lr= E B exp(-D5t/pj), (36)
i- I

where B. is equal to r.,/ro in Eq. 35, p. = X . Other values can be read from Fig. 5.
Typical theoretical curves are given in Fig. 6. In this case, too, the initial slopes are
equal to 6D5, and the curves can be approximated by an expression (broken lines)

r(t)lro = B., + (1 - B.) exp (- D,t/ p >). (37)

Note that as far as the rotation around the long axis is free, the value of r.I/ro does
not exceed 0.25.

Disk-Shaped Molecule
As Weber (12) has pointed out, both the absorption and emission moments of aromatic
molecules are generally contained in the plane of the aromatic rings. In this subsection,
we consider those aromatic molecules whose shape is approximated by a disk. The
most probable orientation of these molecules in the lipid bilayer will be the one in
which the axis perpendicular to the plane of the disk is contained in the plane of the
membrane. The molecule will rotate principally in the plane of the disk (in-plane rota-
tion), whereas the out-of-plane motion tends to be more or less restricted.
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1.0 DOst
FIGURE 6 Theoretical curves of fluorescence anisotropy decay for the spinning-in-equatorial-
band model. The curves from top to bottom correspond to O'ax -/2 - minf Of.0, 36.9°, and
53.2°. Dashed lines are approximate expressions given by Eq. 37. D, is the spinning diffusion
constant.

In the following, we extend the discussion of r. /ro and < Dv> given in the pre-
ceding section, which has been useful primarily for rodlike molecules. First we let
t Xo in Eq. 20 and proceed in the way in which we obtained Eq. 25. We obtain

r = 0.4 [IP2(n */l)w (s,fi) dp d;4 [IfP2(n * #,) wS(p&,#e) d;&a dte], (38)

a generalization of Eq. 25. For disklike molecules, in particular, the two integrations
in the above equation should give the same value. Hence

r0,/0.4 = [fP2(n * ,e)4S(pe) dAe]2. (39)

r:

FIGURE 7 Definition of angles in Eq. 40.
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Note the difference between Eqs. 25 and 39. For disklike molecules, r. is independent
of ro or of the excitation wavelength. If the out-of-plane motion is completely re-
stricted, r. is equal to 0.1.
Next we consider the region t - 0, starting from the general expression 20. Let D1

and D. be the rotational diffusion constants corresponding to the in-plane and the
out-of-plane motion, respectively. Then for t 0,

f g(pd,g,0 Pa'1.e, t) dlta e1 exp 4DC w2sin2_41 (40)f901a,Ae 4wxN/_ThjDt4jtL 4D tj

where c and i/ are defined in Fig. 7. We again use expansion 14, which for small o be-
comes

p2(;&a-y P2(cos X)(l _ Jw2) + Pl(cos X)w cos & + jP2(cos X)W2 cos 2#. (41)
Substituting Eqs. 40 and 41 into 20, we obtain

rl - 6<RD + Do>t forX = 0 (ro = 0.4)
r(t)/ro I 6<D0>t forA = 7r/4(ro = 0.1)

lJ - 6 <Di>t forX = 7r/2(ro = -0.2) (42)

where < > denotes the average over possible dependence of D, and Do on the orien-
tation in the stationary distribution Ws. Thus we can measure both the diffusion con-
stants by varying X, which is the function of the excitation wavelength. The fact that
we can discriminate D, and Do by suitable selection of the excitation wavelength has
been pointed out by Shinitzky et al. (13) for the case of stationary excitation. Note that
Eq. 42 is valid even in an anisotropic environment like membrane, because the "dif-
fusion" term dominates over the "potential" term at t 0.
For a disklike molecule interposed in the array of rodlike lipid molecules, the sta-

tionary distribution of Pe may be approximated as uniform over a meridian band in-
stead of the equatorial band discussed under Rod-shaped molecules (a complete our-of-
plane turn will take a much longer time than the in-plane rotation or the out-of-plane
wobbling). When the difference between D, and Do is small, the mode of rotational
motion is exactly the same as in rod-shaped molecules, except that the symmetry axis
is contained in the plane of the membrane instead of coinciding with the normal.
Under these assumptions, therefore, theoretical r(t) is given by the same expression as
Eq. 36, which is valid for ro-- 0.4.

APPLICATION TO EXPERIMENTAL DATA

The theory combined with a suitable experimental technique will enable us to visualize
the wobbling motions in membranes. This section briefly discusses the experimental
aspect; the next section illustrates an example.

In its general form the theory describes the motion of a fluorophore by two param-
eters, the (average) wobbling diffusion constant <D,,> and the degree of orienta-
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tional constraint r I/r0. Since <D )> and r I/r0 are determined from the initial
slope and the stationary value of an experimental r(t), the measuring system must have
a good time resolution as well as a wide dynamic range. The latter is required because
the total fluorescence intensity decays substantially by the time r(t) reaches the sta-
tionary value. These requirements are met by a pulse fluorometer employing the single
photon counting technique (1,2). An apparatus specifically designed for the present
purpose has been described elsewhere (7).
With currently used pulse fluorometers, a precise r(t) is obtained only through a de-

convolution procedure that corrects the observed data for the time characteristics of
the apparatus. The ordinary procedure is to assume that r(t) is expressed as a sum of
several exponentials:

N

r(t) = E r,exp (- t/xi), (43)
i- I

and determine the values of ri and X, by curve fitting (7) or by one of the alternative
methods (1,2). When the environment of fluorophores is anisotropic, one of the ex-
ponential terms becomes a constant (XN = X, rNv = r.,), from which the degree of
orientational constraint is obtained. The wobbling diffusion constant is given by

< DW >= 6Zrilxi ri (44)

Often the mode of wobbling motion may be inferred from available knowledge. In
this case, the corresponding differential equation (such as Eqs. 22 or 29) is first solved
to construct a theoretical r(t). Then parameters in the theoretical r(t) are determined
by deconvolution (curve fitting) using this theoretical r(t) instead of Eq. 43. In the
simple models in the previous section, in particular, all theoretical r(t)s have the ap-
proximate form:

r(t) = (ro- r)exp(-t/x) + r.. (45)

Therefore, the ordinary deconvolution procedure can be used to determine ro, r., and
X. Then, Dw and Omax in the wobbling-in-cone model, for example, are obtained from
Eq. 32 and the relation:

DW= <a>/x, (46)
where the value of < a > is read from Fig. 3b.

DYNAMIC STRUCTURE OF LIPID BILAYERS AS REVEALED BY
THE MEASUREMENT OF FLUORESCENCE POLARIZATION DECAY

The motion of a fluorescent probe 1,,6-diphenyl-1,3,5-hexatriene (DPH) in liposomes
of dipalmitoylphosphatidylcholine (DPPC) has already been analyzed by the theory.
Since the details have been reported elsewhere (8), only an outline is given here.
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DPH is a probe for the hydrocarbon region of lipid bilayers; it is a rod-shaped mole-
cule with 1a and yse lying parallel to the long axis (14). Thus, it belongs to the
class i molecules discussed in the section of simple models. DPPC bilayers in aqueous
dispersion undergo the gel-to-liquid-crystalline phase transition at about 40{C (15).
Fluorescence polarization decay measurements (8) showed that r(t) of DPH in DPPC
bilayers closely follows Eq. 45 both below and above the phase transition temperature.
Finite values of r. clearly indicated an anisotropic environment for the DPH mole-
cules, in agreement with the observation (16) that DPH in lipid bilayers are preferen-
tially oriented along the normal of the membrane.
The motion of the DPH molecules was analyzed by the wobbling-in-cone model as

outlined in the previous section. The cone angle O.max showed a sigmoidal dependence
on temperature: Omax was about 200 at low temperatures and abruptly increased to
about 70° at the phase transition. In contrast to Omax, the wobbling diffusion constant
Dw did not show a discontinuity at the transition; Dw increased roughly exponentially
with temperature from 0.04 ns-' at 5°C to 0.3 ns-' at 60°C.

Since the thickness of the rod-shaped DPH approximates that of the hydrocarbon
chain of a lipid molecule, each probe molecule presumably replaces one acyl chain
in the bilayer structure. Tumbling of the DPH rod occurs as a neighboring acyl
chain(s) wobbles out of the cone. Thus, the motion of DPH directly reflects the
thermal motion of lipid acyl chains. The data suggest a considerable fluctuation of
the chains even in the gel state; above the transition, the interior of bilayers becomes
highly disordered, as shown by the large cone angle, but still retains the orientational
anisotropy. The continuous change of Dw across the transition temperature suggests
that the frequency of fluctuation of acyl chains is not much affected by the phase transi-
tion.

"Viscosity in the cone" may be estimated from the wobbling diffusion constant and
the effective volume of the DPH molecule. Values thus obtained were an order of
magnitude smaller than the "microviscosity" values estimated from steady-state
fluorescence polarization measurements (14,17). The discrepancy arises because the
microviscosity does not discriminate the dynamic friction (reflected by Dj) and the
static orientational constraint. An isotropic medium is adequately characterized by a
single parameter such as the microviscosity, whereas description of an anisotropic
structure such as membrane requires at least two parameters, e.g. the wobbling diffu-
sion constant and the degree of orientational constraint, or the viscosity in the cone
and the cone angle.

CONCLUSION

By the nanosecond fluorescence polarization technique, we can obtain information
about molecular motions within, and restricted by, a structure. The wobbling motion
in membranes is an example. Others are the internal motion of a residue or a subunit
within a macromolecule, the flexing motion in a fibrous structure, etc. Generally, the
motion is wobbling rather than free rotation, because a particular orientation(s) of the
mobile unit is favored by the surrounding structure.
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Although the discussion in the foregoing sections has been focused on membrane
systems, most of the results obtained there are applicable to other systems as well: no
assumptions peculiar to membrane have been made. Since measurements are usually
made on suspensions, Eqs. 20 or 21 afford the basis of analysis for all systems. These
equations correlate the polarization decay in a general way with the wobbling motion
in the structure, provided the rotation of the whole structure is slow as compared to
the internal motions. The simplest and yet fully informative way of analysis is to
describe the wobbling motion in terms of the wobbling diffusion constant and the
degree of orientational constraint. When the mode of the wobbling is known or can
be inferred, the analysis using one of the simple models offers a clearer picture.

In this regard, a comment should be made on the symbol n, introduced as the normal
of a membrane segment. It should, in general, be understood as the average direction
of the emission transition moment. In other words, n corresponds to the (approximate)
symmetry axis of the local structure in which the unit containing the fluorophore
wobbles.2
When the concentration of fluorophores in the structure is high, the excitation

energy transfer between fluorophores (19) also contributes to the depolarization of
fluorescence. Formally, Eqs. 20 and 21 can include this situation. Consider an ex-
ample where membrane contains a dense population of relatively immobile fluoro-
phores. Then the evolution function represents the probability of energy transfer
that results in the assigned change of the orientation of emission transition moment.
The initial slope of the curve r(t)/ro is roughly proportional to the average rate of
energy transfer, which in turn will be proportional to the third power of the number of
fluorophores per unit area if the transfer is of the Forster type (19). The quantity
r I/ro may still be called the degree of orientational constraint: it represents the
degree of parallelism among the orientation of fluorophores in the membrane. Note
that, in this case, n in Eq. 25 should be read the direction of the emission moment
averaged over all the interacting fluorophores; whereas in case of the wobbling motion
it corresponds to the direction of the moment in an individual fluorophore averaged
over time.

Recently a new method has been developed to follow rotational or wobbling motion
through the measurement of transient absorption dichroism of triplet probes (20).
This method covers a time range of microseconds and milliseconds. Because the
fluorescence polarization technique is useful in the nanosecond region, both methods
complement each other. In the study of biomembranes, fluorescent polarization is
suitable to probe the motion of lipids while the transient dichroism method will be
powerful for protein wobbling. The theory developed here is directly applicable to this
new technique, because both methods observe essentially the same quantity, the
anisotropy of the orientational distribution of transition moments.

2Even in lipid bilayers, the long axis of lipid molecules is usually inclined from the normal of the membrane
at temperatures below the phase transition (18). In this case, of course, n should be taken parallel to the long
axis.
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