Criteria for the rapid diffusion limit of fluorescence energy transfer
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Excitation energy transfer in a system where the spatial relationship between the donor and
acceptor is not fixed generally leads to a nonexponential decay of donor fluorescence. A single-
exponential decay, however, is expected as a limiting form when the diffusion of the donors
and/or acceptors is sufficiently rapid. The exponential character at the rapid diffusion limit
will greatly facilitate the analysis of experimental data. In this paper a theoretical framework is
presented that allows the calculation of the criterion for the rapid diffusion limit. Explicit
criteria are given for various donor-acceptor geometries, all for the case of energy transfer via
the resonance interaction of the Forster type. The criteria, except for the cases of densely
distributed acceptors under a wide surface, have a common form Drpa*/R,> A, where 75, is
the lifetime of donor fluorescence in the absence of acceptors, D is the sum of diffusion
coefficients of the donor and acceptor, a is the distance of closest approach between the donor
and acceptor, R, is the critical distance for energy transfer, and A is a geometrical constant
with a value less than one. Exponential decays are not easily obtained when acceptors are
densely distributed under a wide surface. The results are compared with the criterion given
earlier by Thomas et al. [D. D. Thomas, W. F. Carlsen, and L. Stryer, Proc. Natl. Acad. Sci.
U.S.A. 75, 5746 (1978) ]. Experimental aspects, such as the effect of heterogeneity in a sample,

are also discussed.

1. INTRODUCTION

Fluorescence energy transfer is a useful tool for studies
of macromolecular and supramolecular architectures. Anal-
ysis of the rate of excitation energy transfer from an excited
fluorophore (donor) to a nearby acceptor yields informa-
tion about the distance between the donor and acceptor. The
energy transfer rate can be estimated experimentally from
the decrease in the lifetime, or in the quantum yield, of donor
fluorescence in the presence of the acceptor. When the trans-
fer occurs via the resonance interaction of the Forster type,’
the transfer rate is sensitive to the intermolecular distance of
the order of 1-10 nm. Since the sizes of most biological ma-
cromolecules fall in this range, the distance determination
by means of fluorescence energy transfer has found wide
applications in structural biology.? Typically the distance
between two distinct sites in a macromolecule, or a macro-
molecular assembly, is estimated by labeling each site with a
donor fluorophore and an acceptor dye. In addition to the
distance, orientations of the donor and acceptor can be de-
termined under special conditions.?

The energy transfer technique can also be applied to
systems of distributed acceptors (and/or donors) where the
spatial relationship between the donor and acceptor is not
fixed. An important parameter in such systems, which can
be estimated from an energy transfer experiment, is the dis-
tance of closest approach between the donor and acceptor.**
If the donor is an internal chromophore of a biological ma-
cromolecule, e.g., the distance to an aqueous surface can be
estimated by putting suitable acceptors in the external medi-
um. Similar techniques have been successfully applied to the
studies of chromophore disposition in soluble proteins®’ or
in biomembranes.®®

In the presence of distributed acceptors, the donor flu-
orescence does not, in general, decay exponentially, since the
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spatial distribution of acceptors around each donor is differ-
ent from donor to donor. A single exponential decay, how-
ever, is expected when the diffusion of donors and/or accep-
tors is rapid enough to average out the distribution before
significant energy transfer takes place (the rapid diffusion
limit*>®). Analysis is thus greatly facilitated by designing an
experiment that meets a criterion for the rapid diffusion lim-
it. This is particularly true for steady-excitation fluorometry
where interpretation is very difficult, if not impossible, un-
less single exponential decay is ensured.

The criterion for the rapid diffusion limit has been dis-
cussed by Thomas et al.* in general terms. Kouyama et al.’
have also given a criterion applicable to their experimental
data. The criteria given by the two groups, however, are ap-
parently quite different from each other. The purpose of the
present paper, therefore, is to resolve the discrepancy and to
derive criteria that are of general use. First we introduce in
Sec. II a theoretical framework that allows the calculation of
the rapid diffusion criteria. Then we present in Sec. III ex-
plicit criteria for various geometries of donor-acceptor
boundary, all for the case of energy transfer of the Forster
type. In Sec. IV we compare the criteria with that of Thomas
et al.,* and discuss some experimental aspects.

Il. THEORETICAL FRAMEWORK
A. Description of the problem

In a system containing M donors and N acceptors, the
intensity F(z) of donor fluorescence after a pulsed excitation
at time ¢ = O is given by

1 ¥ 1 =
F(t)=—z exp —(—~+Zk(R,.j)t)J, (1)

M=, ™T> Jj=1
where 7 is the excited-state lifetime of the donor in the

absence of acceptors, and k(R;; ) is the rate of energy trans-
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fer as a function of the separation vector R;; between donor i
and acceptor j. We define a normalized decay rate £(¢) by

&(2) = — [dF(¢)/dt ]/F(?) . 2)

Initially all the transfer rates make unbiased contributions to
the decay rate:
1 1 M N

§(O) ™o + Miglj=
Thereafter £(¢) generally decreases with time ¢, since those
donors with a large k(R;; ) are rapidly quenched and disap-
pear from the sum in Eq. (3). The rapid diffusion limit is
attained when R; changes so rapidly as to keep the distribu-
tion of the values of k(R )’s for the remaining donors prac-
tically constant during the whole decay process. In the limit
£(#) is independent of time and F(z) decays exponentially.
Our goal is to find out an inequality for the diffusion coeffi-
cients of the donor and acceptor that ensures the rapid diffu-
sion limit.

K (Ry). (3)

B. Criterion for the rapid diffusion limit

Below we develop a formal theory which leads to the
inequality representing a criterion for the rapid diffusion
limit. The framework follows essentially that of Steinberg
and Katchalski.'®

We consider a system shown in Fig. 1(A), where each
donor is embedded in a particle of arbitrary shape and accep-
tors are spherical. The particle may contain mulitiple donors
as long as all donors occupy equivalent positions. Without
loosing generality, we neglect the radius of the spherical ac-
ceptors (and add a corresponding thickness to the donor
particle). We assume that the system is dilute and neglect
the effect of concentration on the diffusion coefficients of
donor particles or of acceptors. Before proceeding further,
we note that the following discussion is equally applicable to
the system in Fig. 1(B) where the geometry of donor and
acceptor is exchanged. The case of multiple acceptors in a
particle may also be included since the acceptors can be re-
placed, mathematically, with a single, effective acceptor (see
examples in Sec. III below).

(1) Illuminate the sample with a pulsed light at time
zero (¢t = 0) so that only one of the donors is excited. Con-
sider a large volume ¥ around the donor; the volume con-
tains NV acceptors numbered 1,...,,...,N.

(2) Suppose that acceptor j and the donor is separated

&)
X

FIG. 1. Geometry of donor-acceptor systems. Open circles, donors; closed
circles, acceptors. R represents the donor-acceptor separation vector and a
the vector at the closest approach.

by a vector R} at ¢ = 0. Define p(R7;R;,¢) as the joint prob-
ability that the separation vector becomes R; at  and that the
excited donor has not given its energy to acceptor by time ¢.
[We ignore, until step (3), the self-deactivation of donor
excitation and the energy transfer to other acceptors.] The
probability p satisfies the following differential equation:

0,
211(_5571‘;_,’1 = —k (R)P(R%R,1)

+ DA p(REGR, 1) (4)

where k(R,;) is the rate of energy transfer from the donor
particle to acceptor j, D is the sum of the diffusion coeffi-
cients of the donor and acceptor, and ARJ is the Laplacian
operator with respect to R;. The boundary conditions for p
are

p(R]‘-’;Rj,O) =6(R'—R,), (5a)
ap(R});Rj,t)
dn

where n is a vector normal to the surface of the particle con-
taining the donor [or acceptor in Fig. 1(B) ]. The last condi-
tion (5b), which states that the particle surface is impenetra-
ble, differs from the boundary condition employed by
Steinberg and Katchalski,'® who imposed p(R%R,,#) =0 at
the surface. Equation (5b) is appropriate when k(R;) re-
mains finite at the surface as in the case of energy transfer via
the Forster mechanism.* (The case D = 0 may be included
as a limit.) The condition p = 0 at the surface applies when
contact with the particle surface immediately quenches the
donor fluorescence. In this case the rapid diffusion limit is
never attained.

(3) Now the probability m (R3,...,R%;¢) that the donor
above remains excited by time ¢ without undergoing self-
deactivation nor giving its energy to any of the N acceptors in
the volume V'is given by the following product:

=0 at the surface of the particle, (5b)

N

m(RY,..,.R};t) =exp( —t/7p) .Hl fVP(R,(-’;Rj,t )dR;,
ji=

(6)

which also gives the decay kinetics of the donor fluorescence
with the specified initial distribution of acceptors. In gen-
eral, the decay is not exponential unless D =0or D = .

(4) Repeat the pulsed excitation many times and accu-
mulate the fluorescence decay data. [This procedure is e-
quivalent to the averaging over different, but identical, do-
nors in Eq. (1).] The final decay function m(t),
corresponding to F(¢) in Eq. (1) for the case of M- w0, is
obtained by averaging m(RY,...,R%;?) in Eq. (6) over the
initial distribution of acceptors:

A =L [+ m(RS, Rt )d Y-~ B,

N
= exp( ——t/TD)[iVJ.pr(RO;R,t)dR dRO]
(7a)

J. Chem. Phys., Vol. 86, No. 6, 15 March 1987

Downloaded 17 Aug 2003 to 192.58.150.40. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Kinosita, Jr., Kouyama, and ikegami: Rapid diffusion limit of energy transfer 3275

1
= exp( —t/TD)[l -7

v
N
X [1 — Ip(RO;R,t )dRO]d R] . (7b)
v

By taking the limit of ¥— o and N— oo while keeping N/
¥V = C, (number of acceptors per unit volume), we obtain

7103 =exp[ —t/mp — J{CO—C(R,t)}dR], (8)

where
C(R)=C, fp(R";R,t )yd R® (9)

satisfies Egs. (4) and (5b) (p in these equations should read
C) together with the initial condition

C(R0) =C,.

The integrations are performed outside the particle.
(5) The normalized decay rate £(¢) is calculated from

Eq. (8) as
_ O =
& = at{h‘[’"(’”}

(10)

=1/mp + gt-[ f {Cy,—C(R,)} R]

=1/ +fk(R)C(R,t)dR, (11)

£0) = 1/my + G, [ K(RIAR. (12)
Thus, observed fluorescence initially decays as
exp[ — £(0)¢] whether diffusion takes place or not. There-
after, unless the diffusion is rapid enough, C(R,¢) in Eq.
(11) decreases with time particularly for those values of R
where k(R) is large, leading to a slowing down of the flu-
orescence decay. This is a restatement of what we have said
in Sec. IT A above.

(6) Now the criterion for the rapid diffusion limit is that
C(R,1) = C, for all R values outside the particle and for ¢ up
to several times 7. It is clear that the change in C(R,?) is
fastest at R = a where the closest approach between the do-
nor and acceptor is attained (see Fig. 1). Since experiment
requires that detectable transfer occurs by time t~7p, a
practical criterion is

C(a,w)zCO- (13)

This condition ensures that 72(?) —exp[ — £(0)¢] for all
values of ¢.

(7) To obtain an explicit expression of rapid diffusion
criterion for a particular shape of the particle, we have to
solve Eq. (4) for C(R,?) under the boundary conditions
(5b) and (10). The condition (13), however, requires that
the solution should be quasistationary at the rapid diffusion
limit. Thus we seek for a stationary solution C° (R) of Eq.
(4) and impose C * (a) =~ C,. We expand C ° (R) in the form
of a series C*(R) =C,+ C,(R)/D + C,(R)/D* 4 -~
Comparing quantities of the order of 1/D we obtain

ARC,(R) = k(R)C,, (14)

= 0 at particle surface, and C;(R— ) =0.
(15)

The solution is expressed in terms of Green’s function G that
satisfies

dC,(R)
on

ARG(R%R) = —8(R°—R) (16)
and the boundary conditions (15):
Ci(R) = — Cofk(R°)G(R°;R)dR°. a7

The rapid diffusion limit is attained when — C;(a)/D<C,
or when

-;-fk(R)G(R;a)dR«. (18)
This result is completely equivalent to the one introduced by
Kouyama et al.,’ who sought for a time dependent solution
of Eq. (4) and then let ¢ — oo . The result is also equivalent to
the condition for the observation of exponential lumines-
cence decay given earlier by Samson''! [our G(R;a) corre-
sponds to & W(a,R;t')dt’ in the inequality (10) in his pa-
per].

C. The case of finite volume

Here we deal with the case where the diffusing acceptors
(or donors) are contained in a closed volume ¥ surrounded
by a wall containing donors (or acceptors). An example is
the reverse system studied by Thomas and Stryer® which
consisted of vesicular membranes with acceptors in the
membrane phase and donors diffusing in the intravesicular
aqueous phase. The case of finite volume requires slight
modifications of the procedure in Sec. II B above.

Equations (4) through (7) remain valid if we under-
stand that the “particle” above means in this case the wall of
the closed volume. Note that all equations are unchanged
upon reversal of the separation vector R, or upon the ex-
change of the donor and acceptor. Mathematically, there-
fore, the case of diffusing acceptors inside a vesicle is equiva-
lent to the reverse case of diffusing donors trapped inside a
vesicle. The reverse case may call for additional comment:
Formally, if multiple acceptors exist in the wall of the vesicle
(or in any acceptor particle), they should be treated as a
unit, i.e., should be replaced with an equivalent pseudoac-
ceptor (see Secs. II1 E and III F below). The vesicle system
thus contains only one pseudoacceptor (N = 1) to which
excitation energy is transferred at the rate K (R) which is the
sum of transfer rates to the real acceptors. However, the final
expression for the rapid diffusion criterion, the inequality
(31) below, does not depend on N. We therefore do not
introduce the pseudoacceptor concept explicitly until we
deal with the cases of densely distributed acceptors (Secs.
III E and III F) where k(R) is significantly different from
individual rates.

Instead of C(R,?) in Eq. (9) we define I(R,?) by

I(Rt) =exp(kt) f p(R%R,1AR®, (19)
| 4
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where
i‘cEl.f k(R)dR. (20)
Vv

The function I(R,t) satisfies
g;I(R,n = [k —k(R) MR + DAIR,), (21)

together with the boundary conditions
I(RO)=1,

OI(R,1) f;’t) = 0 at the surface of the wall.

(22a)
(22b)

Now steps (5) to (7) are modified as follows:
(5') The normalized decay rate £(z) is calculated from
Eq. (7a), using Egs. (4) and (19), as

Eny = — %ﬂn[mm]}
=1/ry — [N f 9 p(R%R,)dR dR°] /
v ot
[fp(R%R,t)dR"]
| 4

=1/ + [Nf k(R)I(R,t)dR] /
Vv

U I(R,t)dR] .
| 4

The initial decay rate £(0) is again given by Eq. (12).
(6') Comparison of Egs. (12) and (23) suggests that
the rapid diffusion limit is attained when

ka(R)I(R,t)dRzCo[f k(R)dR][fI(R,t)dR]

(23)

or

f ERI(RNHIR=k f I(RdR (24)

holds for ¢ up to several times 7. On the other hand, Eq.
(21) shows that I(R,?) tends to decrease in the *“sink” re-
gion where k(R) >k and increase in the “source” region
where k(R) < k. With time ¢, therefore, the left-hand side of
the relation (24) becomes smaller than the right-hand side
unless the diffusion coefficient D is large enough to keep
I(R,?) practically constant. If we define two vectors a and f
such that K(R) is maximal at R = a (closest approach) and
minimal at R = f (farthest separation), the rapid diffusion
criterion is stated in the form /(a,0 ) ~1 and I(f,0 ) =~ 1, Or

I(f,0) —I(a,0) <1 (25)

(7') Asin step (7) above we seek for a stationary solu-
tion 7 ° (R) of Eq. (21) and impose 7 * (f) — I * (a) €1. Ex-
panding I°(R) as I°(R)=1+I,(R)/D+ I, (R)/
D%+ - wehave for I,(R):

AgI(R) =k(R) —k, (26)
_aii?_(nB_)_ = 0 at the wall surface. 27

In the case of finite volume Green’s function G that would
satisfy the boundary condition (27) does not exist. Instead
we introduce a function A that satisfies

ARH(R%R) = —8(R°—R), (28)
and the boundary condition
0,
SH(RR) _ /5 at the wall surface, (29)

where S is the surface area of the wall. Then the solution of
Eqgs. (26) and (27) is expressed as

I(R) = —f [k(R%) — % |JH(R%R)JR®. (30)
Vv

Note that the above expression for I, (R) satisfies the bound-
ary condition (27). The rapid diffusion criterion for a finite
volume is expressed as (I,(f) — I,(a)]/D<£1, or

%f [k(R) — | [H(R;a) — HR;D]dR<1. (31)
| 4

For V- o this result reduces to the criterion (18) since
k-0, H- G, and H(R;f) -0 for small R for which k(R) is
significantly greater than zero.

lil. RAPID DIFFUSION CRITERIA FOR ENERGY
TRANSFER OF THE FORSTER TYPE

Now we calculate explicit criteria for several geometries
of the particle or wall. We assume the Forster mechanism in
the rest of this paper.

For energy transfer via the Forster mechanism, the rate
k(R) is given by’

k(R) = (x*/7p) (Ry/R)°, (32)

where «? is the orientation factor and R, is the critical dis-
tance for energy transfer. The magnitude of R, depends on
spectroscopic properties of the donor and acceptor; for most
donor-acceptor pairs R, ranges between 1 and 10 nm. Note
that our R, is slightly different from the common definition®
in which the orientation factor &2 is included.

Since we are interested in the rapid diffusion limit, we
can assume that at least the donors or acceptors rotate rapid-
ly. Then &2 is given by'?

K =}+cos’ @, (33)

where @ is the angle between the separation vector R and the
direction of the transition moment of the acceptor absorp-
tion (in the case of rapid rotation of the donor) or of the
donor emission (rapidly rotating acceptor). Obviously «*
takes a value between 1/3 and 4/3; «* = 2/3 for rapid rota-
tion of both donors and acceptors. Since the rapid diffusion
criteria are expressed in the form of an inequality, setting
«* = 2/3 does not introduce serious errors.

A. Spherical particle of radius a containing a donor or
acceptor at the center

Take the origin at the center of the sphere and introduce
polar coordinates (7, 8, ¢) as in Fig. 2, case A. For a separa-
tion vector R ending at r, the transfer rate is given by
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z Case A z Case B

o
X 7777777777 77, X

FIG. 2. Coordinate systems used in Secs. III Aand III B.r = (r, 8, 4) isa
vector representing the position of the acceptor in the coordinate system.
p=cos 8.

k(R) = (K/15) (Ry/1)°. (34)
With a, the separation vector at the closest approach, along z
axis, Green’s function is given by

2
(P —2arp + a*)'?

1,a-m+ (P —2arp +a*)'?

47G(R;a) =

a r(l —p)
p (35a)
o0 all n
=2"=0',.—+_1P )
o l an
— — P , 35b
..Z’on+1r"+1"(p) (330)

where P, (p) is the Legendre polynomial of order » and
p=cos 6. Introducing Egs. (34) and (35b) into the inequal-
ity (18) we obtain the rapid diffusion criterion for x* = 2/3
as

Drpa*/RE>1/6=0.17. (36)

If rotation of the particle is slow and «? in Eq. (33) is used
(® = 0), the criterion is

Drpa*/R§>11/54=0.20. 37
In either cases the decay rate is given by
£(0) = 1/7p + 87C,R §/91pa> . (38)

B. A donor or acceptor under a flat surface at a depth of
a

The geometry is shown in Fig. 2, case B. The case ap-
plies, e.g., to chromophores embedded in a membrane sheet
or in a large membrane vesicle. For acceptors in a mem-
brane, however, the surface density of the acceptors as well
as the size of the membrane must be small (see Sec. II1 E
below).

Take the coordinate system as in Fig. 2. Then

KRG 1
> (7 + 2arp 4+ a*)? ’
47G(R;a) =2/r. (40)

The rapid diffusion criterion for * = 2/3 is obtained from
the inequality (18) as

Drpa®/R$> (1/6) (w/4 — 1/3) =0.075, (41)
and the decay rate is given by

k(R) = (39

£(0) = /1, + wC,R §/9mpa>. (42)

If the donor (or acceptor) under the surface does not
rotate and its transition moment makes an angle ® with re-
spect to z axis, the criterion calculated with a proper «? is

Drpa*/R§» /64 + (57/64 — 1/6)cos’> ©
~0.049 + 0.079 cos’ ® . (43)

Kouyama et al.’ have given a criterion for this particular
case. Numerical values in their result are slightly different
from those in Eq. (43) above, since the previous result was
based on an approximate calculation. The decay rate for this
case is

£(0) =1/ +TCR S (1 + cos’ @) /127pa> .  (44)

C. A sphere of radius b with a donor or acceptor at a
depthof 2

This is a generalization of the cases A and B above. The
sphere may contain multiple, but equivalent, donors. Multi-
ple acceptors may also be considered if their surface density
is low and the radius of the sphere is small (see Sec. III E
below). An example of application is a membrane vesicle
with donors in the membrane phase and acceptors diffusing
in the external medium. Another example is a large protein
molecule with a buried chromophore.

With the coordinate system shown in Fig. 3, the transfer
rate is given by
KRG 1

> (P —2crp + ) ’
where c=b — a. We take x> as 2/3. Green’s function is given
by Eq. (35) in which a is replaced with . To avoid compli-
cated integration we neglect the second term on the right-
hand side of Eq. (35a). Inspection of Eq. (35b) suggests that
this approximation leads to an overestimation of the integral
in the inequality (18) by a factor of at most 2, which may be
disregarded safely. After a lengthy procedure of integration
we obtain finally the rapid diffusion criterion:

k(R) = (45)

Drpa*/R§ >-1— % arctan(y*/?)
Y

6
+1~2y—72—3(2/3)r’ , (46)
a+»
where y=c¢/b = (b — a)/b < 1. The right-hand side takes a
value between 0.075 and 0.333. The decay rate (for &% = 2/
3) is given by

FIG. 3. Coordinate systems used in Secs. III C and III D.
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£(0) = 1/1p + 87CR § /9103 (1 + )2, 47)
In the limit of b— 0 and ¥ — 1, relations (46) and (47) re-
duce, respectively, to relations (41) and (42). For -0, Eq.
(38) is recovered from Eq. (47) but the right-hand side of
the inequality (46) becomes 1/3 instead of 1/6 in the in-
equality (36). The discrepancy is due to the omission of the
second term of Eq. (35a).
D. A hollow sphere of radlus b with a donor or acceptor
in the wall at a depth of 2

The geometry is shown in Fig. 3. Aside from an obvious
application to membrane vesicles, this case may apply to a
large particle with a deep surface depression below which a
chromophore is situated. The wall may contain multiple, but
equivalent, donors. Multiple acceptors are allowed when
their surface density is low and the radius b is small (see Sec.
III F below).

The transfer rate is again given by Eq. (45) where ¢ in
this case is defined by c=b + a. We take x? as 2/3. The
average transfer rate k in Eq. (20) is then calculated to be

k=2R$/3rpa’b3(1 + )%, (48)

where ¥ in this case is defined by y=c/b= (b +a)/b> 1.
The function H(R;a) in the inequality (31) is given by

2 1

ArH(R;a) = +—

TR = 1557 T b
2b 1
XIn: - =
I‘b—rp+(r2—2brp+b2)1/2 b
(49a)

Z P(p)

+3 L b"+1” )—-. (49b)

n=1
The farthest separation between the donor and acceptor is
achieved on z axis at z = — b. Thus H(R;f) is given by Eq.
(49) in which p is replaced with — p. For both H(R;a) and
H(R;f) we neglect the second term on the right-hand side of
Eq. (49a). The error introduced should be within a factor of
3/2 and is negligible when a is much smaller than b. Under
this approximation the rapid diffusion criterion is calculated

to be
1
D"'Da"/R > [ 172 tan(—-—yuz)

_6r’+wr+ (r—1)?
3y 4+ 1D* 2y + DY

1 7’1/2+ 1]

(50)

The right-hand side takes a value between 0 and 0.075. The
decay rate is given by Eq. (47) with ¥ defined above. The
acceptor concentration C, in Eq. (47) is the concentration
inside the sphere. When acceptors are buried in the wall, C,
is the number of acceptors divided by the volume in which
the donors diffuse:

£(0) = 1/1p + 87R §/31p,a%bA(1 + 9)?, (51)

where 4 is the average surface area (at radius b) per accep-
tor. Relations (41) and (42) are recovered from relations
(50) and (47) by taking the limit of 5—» « and y—1. As

¥— o (b—0), the right-hand side of the inequality (50)
approaches zero, ensuring an exponential decay of fluores-
cence. This is an expected but trivial result.

Although we have assumed that the hollow sphere is
closed, existence of an opening(s) toward an external space
does not seriously affect the results provided the transfer rate
k(R) is negligibly small in the external space. This is because
the major term on the right-hand side of the inequality (50),
the first term containing arctan, comes from the term
k(R)H(R;a) in the integrand in the inequality (31). Con-
nection to the external space further reduces the contribu-
tion from other terms since k and H (R;f) tend to zero, while
H(R;a) is not significantly altered at R~a where k(R) is
large. In applications to membrane vesicles with donors in
the membrane phase, e.g., leakage of acceptors through the
membrane does not affect the fluorescence kinetics provided
the donor position is closer to the internal surface of the
membrane (so that the energy transfer to external acceptors
is negligible). The case of a donor situated below an (ap-
proximately spherical) depression on a large particle is also
dealt with by relations (47) and (50). The reverse cases
where acceptors are in the wall, however, are not straightfor-
ward. In open systems, the acceptor concentration C; in Eq.
(47) is the number of acceptors in the sample divided by the
sample volume including the external space; Eq. (51) does
not apply. Significant deviation of £(0), the decay rate, from
1/7p thus requires a large number of hollow spheres. At the
same time, however, the volume fraction of the hollow parti-
cles, including their internal spaces, should be much less
than one, since otherwise the excluded volume effect leads to
the violation of the multiplication law on the right-hand side
of Eq. (6). Also the path(s) between the internal and exter-
nal spaces should allow effectively free diffusion of donors.
These conditions, together with the requirement that the ac-,
ceptor density in the wall be low (Sec. III F), severely re-
strict the realization of the rapid diffusion limit in systems of
open hollow spheres with acceptors in the wall.

E. A sphere or radius b with acceptors uniformly
distributed at a depth of 2

The geometry is shown in Fig. 4. A vesicular membrane
containing multiple acceptors is classified in this category or
in case C above depending on the surface density of the ac-
ceptors and the size of the vesicle (see below).

FIG. 4. Coordinate systems used in Secs. III E and HI F. The large closed
circle represents the (arbitrarily chosen) position of the pseudoacceptor.
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Since the distributed acceptors act as a unit, we can re-
place them with a single pseudoacceptor. The pseudoaccep-
tor receives excitation energy from an external donor at an
effective rate given by the sum of transfer rates to real accep-
tors. For consistency with the preceding sections we locate
the pseudoacceptor, arbitrarily, on the real acceptor on posi-
tive z axis (large closed circle in Fig. 4). For a donor at R
from the pseudoacceptor the effective rate k(R) is given, for
K*=2/3,by

2R§ 2702 (! d,
k(R) = 220 2 Ip -
3 p A Ja(P—2rp+?)
R$b2
_ o [ 1 _ 1 ], (52)
Irpderl(r—c)* (r+¢)

where we have smoothed out the acceptor distribution; 4 is
the average surface area (at radius b) per acceptor and
c¢=b — a. Introducing Egs. (52) and (35b) into the inequal-
ity (18) we obtain the rapid diffusion criterion as

2w ab 34y
9 4 (1+p)*’
where y=c¢/b = (b — a)/b < 1. The decay rate is given by

£(0) = 1/75 + 327°C,R$b /9, a%4(1 + ), (54)

where C; is the concentration of the acceptor spheres (num-
ber of spheres per unit volume). Equation (54) reduces to
Eq. (47) upon introduction of the relation C, = C, (47b 2%/
A) where C, is the number of acceptor molecules per unit
volume. For 4 = 41rb ? (one acceptor in the sphere), the in-
equality (53) at the limit of y—0 (b—a) agrees with the
inequality (46) at y—0.

The use of smoothed distribution leads to an underesti-
mate of k(R) at donor positions immediately above the real
acceptors. Since the integral in the inequality (18) is sensi-
tive to the value of k(R) at R = a, the right-hand side of the
criterion (53) is also an underestimate when A is large. A
safe criterion is obtained by adding the right-hand side of the
inequality (46) to the right-hand side of the inequality (53),
since addition of Eq. (45) to Eq. (52) lifts the underestima-
tion.

The above consideration also leads to a distinction
between cases C and E. Comparison of the relations (46)
and (53) shows that case C applies when ab /4 <1 (small
sphere with low acceptor density) and case E applies when
ab /4> 1. In the intermediate range the right-hand sides of
the two inequalities should be added. In any case the decay
rate £(0) is given by Eq. (47) when C, is defined properly.

For given a and 4, the right-hand side of the inequality
(53) tends to infinity as b— « (¥—1). With large spheres,
therefore, the rapid diffusion limit is not easily reached. In
particular the limit is never attained when acceptors are dis-
tributed in an infinite plane. In real systems such as mem-
brane sheets, however, the size of the plane is finite. The
inequality (53) may then be used as the rapid diffusion crite-
rion with b being the radius of the planar sheet.

F. A hollow sphere of radius b with acceptors uniformly
distributed in the wall at a depth of 2

The geometry is shown in Fig. 4. An application to be
considered is a vesicular membrane system.

Drpa*/R§> (33)
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Asin Sec. III E above we smooth out the acceptor distri-
bution and replace the real acceptors with a pseudoacceptor
on positive z axis. The effective transfer rate k(R) is given by
Eq. (52) where c in this case is defined by ¢ = b + a. The
average transfer rate k for the psendoacceptor is given, for
K2 =2/3,by

k=8rRS$/3rpa’bA(y + 1)%, (55)
where y=c¢/b = (b + a)/b> 1. The function H(R;a) in the
inequality (31) is given by Eq. (49b). The transfer rate

k(R) in Eq. (52) is smallest at the center of the sphere.
Therefore, H(R;f) is given by

drH(Rf) = 1/r. (56)
The rapid diffusion criterion is thus calculated as
D,,-Da"/Rg;,_Zf_fi_&l_ (57)

9 4 Yir+D*
The decay rate is given by Eq. (51).

As to the consequence of the smoothing of the acceptor
distribution and to the distinction between cases D and F,
the comments in Sec. III E above apply: For safety, the
right-hand sides of the inequalities (50) and (57) should be
added. Case D is for ab /4 €1 and case F for ab /A> 1.

As in case E above the rapid diffusion limit is not easily
reached when the sphere is large. For example, Thomas et
al* have studied a system in which donors were trapped in
the inner aqueous phase of membrane vesicles with accep-
tors distributed in the membrane phase. The system was
characterized by D~4 X 10~% cm?/s, 7p, = 2 ms, R, = 4.88
nm, b = 15 nm, and a was found to be 1 nm for 4 between
200 and 1000 nm?. These numbers do satisfy the inequalities
(50) and (57) with a safety factor of 10°, For vesicles with a
size of cells (bR 1um), however, the acceptor density (1/4)
needs be increased in proportion to b in order to obtain the
same transfer efficiency [see Eq. (51)]. Then the inequality
(57) will be violated.

V. DISCUSSION
A. Use of the rapid diffusion inequalities

The rapid diffusion criteria are given in the form of in-
equalities. In applications one has to decide how strictly the
criterion should be fulfilled. The derivation in Sec. II shows
that the extent of departure from an exponential decay,
[£(0) — &( ) ]1/£(0), is given approximately by the value
of the left-hand side of the inequality (18) or (31). For the
explicit criteria in Sec. ITL, [£(0) — §( 0 )1/£(0) is approxi-
mated by the ratio of the value of the right-hand side to the
value of the left-hand side in the rapid-diffusion inequalities.
If the ratio is 0.1, e.g., the normalized decay rate £(¢) re-
mains within 10% of the initial rate £(0).

Assuming an exponential decay in the analysis of ex-
perimental data generally leads to an underestimate of the

initial decay rate. The maximal error, however, does not ex-
ceed the above ratio. The error in £(0) is transmitted to the
error in the distance of closest approach, a, through the rela-
tion (47) or a similar relation. Thus 10% error in £(0) is
permissible in most applications, since the relative error ina
will then be a few percent unless £(0) is close to 1/7 and
since the error in R § is usually greater than 10%. In other
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words the inequality sign (> ) reads, practically, “greater at
least by a factor of 107, except where the efficiency of energy
transfer is very poor [£(0) = 1/7p].

B. Nature of the rapid diffusion criteria

The results in Sec. III show that, except for the cases of
many acceptors in the particle (cases E and F), the rapid
diffusion criteria for the energy transfer of the Forster type
have a common form:

Drpa*/R§>A, (58)

where A is a geometrical constant that depends only on the
ratio between the distance of closest approach a and the radi-
us b of the particle. The value of A is less than one. Thus the
inequality (58) with A = 1 may be used as a universal crite-
rion, irrespective of the particle geometry. (Note that this
universal criterion is well on the safe side for single-acceptor
particle systems but is not sufficient for multiacceptor parti-
cle systems for which A may exceed one depending on the
acceptor density. For practical applications, consult an ap-
propriate inequality in Sec. IIT and see Sec. IV A above.)

The inequality (58) is interpreted as follows: At the clo-
sest approach between the donor and acceptor, the rate of
energy transfer is R §/7a® (the orientation factor of the
order of one being neglected). The distance between the do-
nor and acceptor remains on the order of a for the time of the
order of a*/D. Once the distance becomes larger, the transfer
rate is greatly diminished owing to the steep dependence on
the distance. Thus the product (R §/7pa%)(a*/D) is the
probability for the occurrence of energy transfer during a
single encounter. The inequality (58) states that this prob-
ability should be much less than 1/4, or much less than one:
Significant energy transfer must be the result of many en-
counters. Donors are equivalent under this condition. A
convex surface is less advantageous than a concave one,
since diffusion along the convex surface is less effective in
bringing the donor and acceptor apart.

In cases E and F where acceptors are densely distributed
under a surface, the transfer rate at the closest approach is
given, approximately, by R § /7,a*4 [see Eq. (52)]. Inoth-
er words, of the acceptor area A a fraction a’>/A4 gives the
maximal transfer rate R §/7pa% A donor at the closest ap-
proach remains in the neighborhood of the acceptor sphere
of radius b for the time of the order of b 2/D. Of this time a
fraction a/b is passed in the transfer region, i.e., within a
distance @ from one of the distributed acceptors. Thus the
probability of energy transfer during a single encounter
between a donor and acceptor sphere is given by a product
(R§/mpa*4)-(b%/D)-(a/b). The inequalities (53) or
(57) state that the product should be much less than one:
Single encounters must be ineffective. In particular the rapid
diffusion limit is not attained when the surface is infinitely
wide, since those donors that diffuse along the surface fail to
escape from acceptors.

The discussion above does not apply to the cases (D and
F) of finite volume of which the radius b is comparable to or
smaller than a. Here donors cannot escape from acceptors.
Obviously, however, the decay of donor fluorescence should
be exponential when the diffusion within the small volume is

faster than the maximal rate of energy transfer. Moreover, as
the volume becomes smaller (b /a —0) the need for the diffu-
sion is lessened since the variation of the transfer rate in the
volume becomes negligible. Thus the right-hand sides of the
inequalities (50) and (57) tend to zero as ¥y — o« (b/a—0).

C. Criterion by Thomas et al.

Thomas et al.* have suggested that the criterion for the
rapid diffusion limit is

Dry/s°> 1, (59)

where s is the “mean distance between the donors and accep-
tors.” This criterion is apparently quite different from ours
in the inequality (58). For example, it is intuitively clear that
the decay of donor fluorescence cannot be exponential when
a/R,< 1. This situation is excluded by the inequality (58),
not by the inequality (59). In terms of the discussion in the
preceding subsection, the inequality (59) is the condition
that ensures an excited donor many encounters with accep-
tors; the important condition that the transfer probability
during a single encounter be negligible is left out.

The criterion (58) ensures an exponential decay of flu-
orescence. It does not, however, specify whether, or how
much, the decay is accelerated by energy transfer. For exam-
ple, the inequality (58) alone does not exclude the trivial
case where energy transfer is totally ineffective (a— oo or
R,—0). Equation (47) shows that the inequality

CoR$/a*20.1 (60)

must be satisfied for energy transfer to be effective (to acce-
lerate fluorescence decay by more than 10%).
Multiplication of the inequalities (58) and (60) yields

Dy /$*>0.14s/a, (61)

where we have used the relation C, = 1/s (for the case of one
acceptor per particle). The right-hand side takes a value not
much less than one, since a that can be investigated is of the
order of R, which is at most 10 nm and s cannot be much
smaller than 1 nm (C,=~1 M). Thus the inequality (59) is
very approximately a necessary condition, although it is not
sufficient.

D. Heterogeneity

So far we have assumed that the parameters such as R,
a, and b are constant throughout the system. Actual systems,
however, are often heterogeneous. For example, it is very
difficult to prepare a suspension of membrane vesicles with a
uniform radius. Below we discuss the consequence of such
heterogeneity.

The derivation in Sec. II shows that heterogeneities do
not introduce serious problems in open systems (cases A, B,
C, and E in Sec. III) where a donor can interact with any of
the acceptors. The decay of donor fluorescence will be expo-
nential if all types of donor-acceptor pairs in the system
fulfill the rapid diffusion criterion appropriate to the geome-
try. Whether the criterion is satisfied or not, the initial decay
rate §(0) is given by a modification of an appropriate equa-
tion in Sec. I1I: The second term on the right-hand side of the
equation, £(0) — 1/7p, should be summed over different
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types of acceptors and the whole expression should be aver-
aged over different types of donors. _

In a system composed of closed subsystems such as the
hollow spheres treated in cases D or F in Sec. III, exponen-
tial decays are not easily realized. Except for the case of
“leaky”” subsystems discussed in Sec. III D, the subsystems
are independent from each other. Even if each subsystem
satisfies the rapid diffusion criterion and contributes an ex-
ponential decay, the sum is not exponential unless the decay
rate £(0) is common to all subsystems. Heterogeneity,
among the subsystems, in any of the parameters in £(0)
leads to a nonexponential decay. When acceptors are con-
tained in vesicular membranes, for example, £ (0) is sensitive
to the radius b of the vesicles as shown in Eq. (51). Unless
the radius is controlled very carefully, the decay will deviate
from exponential. In the reverse system where donors are in
the membrane phase, £(0) is not sensitive to b (unless b~a)
as is seen in Eq. (47). Instead one may have to worry about
the statistical variation of C,. An acceptor concentration,
Cp, of 1 mM in a hollow sphere of radius 10 nm means only
2.5 acceptors, on the average, per sphere.

E. Experimental aspects

The major purpose of a rapid diffusion experiment is to
estimate the distance of closest approach, a, between the do-
nor and acceptor. With time-resolved techniques, attaining
the rapid diffusion limit is not necessarily an absolute re-
quirement since the measurement of the initial decay rate
with desired precision, if possible, suffices for the determina-
tion of a. Often, however, the precision is guaranteed only
for (nearly) exponential decays, which call for the rapid
diffusion limit.

Attaining the limit is essential in steady-state experi-
ments in which one illuminates the sample with continous
light and measures the quantum yield Q of donor fluores-
cence. In general the dependence of Q on a can be worked out
only by complicated numerical calculations. At the rapid
diffusion limit, however, the yield Q is related to the initial
decay rate £(0) simply by

Op/Q=1p6(0), (62)
where Qp, is the quantum yield in the absence of acceptors.
Thus, using an appropriate expression for £(0) given in Sec.
III, the distance a is determined in a straightforward man-
ner. The value of a obtained may then be used to check if the
rapid diffusion criterion is really satisfied. This is theoreti-
cally a safe procedure, since the value of a calculated from
Eq. (62) is the lower limit [ 7 £(0) is the upper limit of O, /
Q, ie., Op/Q<1p£(0) for nonexponential decays]. Of
course direct confirmation by a time-resolved measurement
is preferable.

In designing a rapid diffusion experiment, both inequal-
ities (58) and (60), or preferably corresponding relations in
Sec. III appropriate to the system, should be consuited. The
inequality (58) is the condition for observing an exponential
decay and serves as a criterion for the choice of a suitable
donor—acceptor pair: For a given range of a to be explored,
the inequality (58) sets an upper limit for R,,. The inequality
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(60) then sets a lower limit of the acceptor concentration. If
the required concentration cannot be achieved, due to solu-
bility or other problems, a donor with a longer 7, should be
sought for.

Thus, as has been discussed by Thomas ef al.,* a donor
with a long excited-state lifetime is desirable in rapid diffu-
sion experiments. The terbium chelates used by these auth-
ors have r, of a few milliseconds. Since the diffusion coeffi-
cient of a relatively small molecule in water is of the order of
10~ ¢cm?/s, a down to 1 nm satisfies the inequality (58)
even for R, as large as 5 nm. With R, = 5Snm and a = 1 nm,
the acceptor concentration can be reduced down to ~10
pM.

Ordinary fluorophores with 7 in the nanosecond
range, however, may also be used by choosing a small R, and
by working at high acceptor concentrations. In the experi-
mental system of Kouyama et al.,’ e.g., the donor was a
reduced chromophore of bacteriorhodopsin with r of 20
ns. The acceptor chosen was cobaltethylenediamine tetra-
acetate, giving R, of 1.26 nm and the diffusion coefficient in
water of 5107 cm?/s. Thus the rapid diffusion limit is
expected when a > 1 nm. At C, = 250 mM they observed an
acceleration of 10% in the rate of fluorescence decay, which
was exponential as expected. Analysis gave a = 1.2 nm.

The discussion in Secs. IV B and IV D above show that,
when dealing with supramolecular systems such as mem-
branes, preferred tactics is to put acceptors in the solution
phase and a donor (s) in the large object. The reverse system
of acceptors in the large object is likely to suffer from compli-
cations such as the difficulty in attaining the rapid diffusion
limit, the heterogeneity problem, and the excluded volume
effect. From biological point of view, on the other hand, an
intrinsic chromophore is the preferred target since it often
constitutes an active center and since perturbations resulting
from labeling can be avoided. Natural chromophores, how-
ever, do not always have a long fluorescence lieftime, al-
though they can almost always serve as acceptors. Chemical
treatment may confer desired fluorescence characteristics to
the chromophore, as in the example of bacteriorhodopsin
above, but this is not always possible.

In any case the best strategy is to investigate the same
object with various combinations of donor--acceptor pairs
and seek for consistency. Such strategy has successfully been
employed in the study of the transmembrane location of the
retinal chromophore of bacteriorhodopsin in the purple
membrane of Halobacterium halobium.®'* Not all measure-
ments were made at the rapid diffusion limit, but the initial
decay rates in all systems were consistent with a unique
transmembrane location of the chromophore.
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