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Deformation of Vesicles under the Influence of Strong Electric Fields
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The deformation of vesicles with conducting membranes in external electric fields has been studied in the framework
of the perturbation theory. A simple model for dynamics of deformation is proposed, and the results of numerical
calculations for typical combinations of the vesicle size and the electric field are presented. When the conductivity inside
a spherical vesicle is larger than that of the exterior medium, the deformations, both static and dynamic, are prolate and,

otherwise, they are oblate.
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§1. Introduction

During the course of extensive studies on electropora-
tion of cells, the mode of cell deformation in a strong
electric field has been observed to depend delicately on
the cell environment as well as on the applied field.>* As
a model system of cell membranes, phospholipid vesicles
may be very suitable for studying essential factors in cell
deformations. In his pioneering works on the effects that
electric and magnetic fields have on vesicle shape,
Helfrich considered various types of strain forces.”* He
concluded that the curvature elastic energy was the most
important factor in controlling the nonspherical shapes
of vesicles. He also studied the influences of fields on the
deformation of lipid bilayers. These studies are concern-
ed with the cases in which the lipid bilayers are perfect in-
sulators. The deformation was found always to be pro-
late in the static electric field. More recently, Ashe et al.
studied the deformation of biological cells having ellip-
soidal shapes.” Calculations for various orientations of
the cell with respect to the electric field were presented.

Recent microscopic observations demonstrated the for-
mation of aqueous pores in the membranes of liposomes
and eggs of sea urchins if they are subjected to very
strong electric fields.!'® As a result, the membrane ac-
quires a finite electric conductivity. It was found that the
conductivities of the aqueous environment as well as that
of the membrane have strong influences on the shape of
the vesicle in the field and on the dynamics of the defor-
mation.*

In the present report, we propose a model which takes
into account the effects of the finite conductivity, and pre-
sent the results of calculations of the static as well as
dynamic deformations of vesicles. The deformation
dynamics of vesicles which have insulating membranes
will be discussed elsewhere.

§2. Electric Forces Acting on Membrane

2.1 Fundamental equations

We consider the situation in which a vesicle is placed in
aqueous solution. The conductivity of the water inside
the vesicle is ¢; and that of the outside water is g.. In the

*H. Itoh and M. Hibino: private communication.
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following, the suffix i (e) is used to designate quantities
related to the internal (external) region of the vesicle.
The thickness of the membrane is taken to be zero and
the electric resistance of the membrane is assumed to be
negligible. When the electric field is applied, the fields
around the vesicle are determined from the equations

div (o; grad ¢;)=0, div (0. grad ¢.)=0, 2.1

where ¢; and ¢. are the potentials of the inside and out-
side regions of the vesicle, respectively. Equations (2.1)
are derived from the relationship between the electric cur-
rent and the field, J=¢FE, and the current conservation
for a stationary state, divJ=0, as well as E= —grad ¢.
Only the cases in which both o; and o, are constant are
considered so that the equations of (2.1), reduce to

A¢;=0, A¢.=0. (2.2)

If we denote the strength of the applied field by Ey, the

asymptotic form of the potential ¢. at infinity is
¢e__) _EOZ .

Here the z-axis is taken along the direction of the applied
field. From rot £=0 and div J=0, one obtains the follow-
ing conditions for the potentials on the vesicle surface:

(2.3)

n-grad ¢i=n-grad ¢.

ait-grad ¢;=0.t-grad ¢.. 2.9

Here the unit vector normal (tangential) to the surface is
denoted by n ().

The shape of the vesicle is assumed to be axially sym-
metric around the z-axis and to have a mirror symmetry
with respect to a plane perpendicular to the z-axis. This
plane is taken to be the x-y plane. The shape of the vesicle
is expressed in the polar coordinates as

r=£(0) (2.5)

and f(8)=f(n—0).

The forces are calculated from the Maxwell stress ten-
sor.” In the following, the cgs units will be used. It is
then given in terms of the, electric field, E, and the dielec-
tric constant, &, as

£
Taﬁ:E (E.Es—1/2E%0.5). (2.6)
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The force per unit area of the vesicle surface is given as

FF; (T8s—T5)ng, Q2.7

where T8 and T are the Maxwell tensors evaluated on
the surface of the vesicle. ny is the f-component of the
vector n. Equations (2.4), (2.6) and (2.7) lead to the ex-
pression for the normal component of the force per unit
area given as

& a; \V & &
Fn=—{[(—)+1—2‘—](Ein)2+(__1>Ei2}’ @2.8)
47 Oe Ee Ee

where E;, and E; are, respectively, the normal component
and the magnitude of the electric field evaluated on the in-
ner surface of the membrane. The surface charge per unit
area p; is determined from the Gauss law as

1 € [(Oi &
Ps=—_ (eeEen_siEin) _____ E;.

2.9
4n 4r 2.9)

In arriving at the last expression, eq. (2.4) has been used.

One might argue that the force may be derived as a pro-
duct of the surface charge and a certain linear combina-
tion of E; and E.. However, it is clear from eq. (2.9) that
the force of eq. (2.8) would not be given by such a pro-
duct. This subtle point has been discussed in various text
books.*® We use the force given by eq. (2.8) in the pre-
sent calculation. The tangential component of the elec-
tric force should be balanced by the stretching force
within the membrane.”? We assume that this component
does not contribute to the force responsible for
macroscopic deformation.

2.2 Spherical vesicles

In the case of a spherical vesicle, the exact solutions of
the above equations can be obtained.

The potentlals are given as

oerfun(2])

3o,

o o( )z 2040,

Eoz, (2.10)

where R is the radius of the vesicle and A is written in
terms of the ratio o;/ . as

a=1a/e 2.11
2+ai/o.’ .11
Therefore, the electric fields are given as
R\ Rz |
E=Ey{1+A|—) 1 Z2—Eo3A|—|—F
r r)r
E=E,(1+1)z, (2.12)

where #=r/r and z=z/r. The field inside the vesicle
turns out to be uniform and is parallel to the applied
field. The normal component of the force is expressed as

P 9 e E} { Gi 2+
" 87 2+0i/0.) Oe

It can be seen from this equation that the deformation
is prolate if (0i/6.)*>2¢i/e.—1 and is oblate otherwise.

&i &
1—28—] cos? 0+——-—1} .

€ €

. 2.13)
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In the particular case of &.=¢;, the deformation is prolate
if g.<a;.

2.3 Small deformation

If the shape of the vesicle is limited to ellipsoids of rota-
tion, the equations can be solved analytically. The expres-
sions for the solutions are given in Appendix A. Analytic
solutions for general shapes may be obtained only by a
perturbative method. In this subsection, such pertur-
bative solutions are presented.

It is assumed that the deformation is represented as a
small deviation from a spherical shape, and the shape is
expressed in the form of a multipole expansion given as

r=f(0)=a(1+g(0))
and

9(6)= i g2Pu(cos 6), (2.14)
I=1

where @ is a constant and P,’s are the Legendre
polynomials. In the following, g»’s are assumed to be
small. A convenient measure of deformation is the ratio
r(8=0)/r(8=mn/2) which is given by
r(0=0) . 1+gz+g4+'
r(0=mn/2) 1—g/2+3gs/8+ -~
We denote the radius of the sphere before the applica-
tion of the field by a,. If the surface area is constant, the
difference between «a in eq. (2.14) and a, gives higher-

order contributions and is ignored in the following. The
potentials ¢. and ¢; are expanded as

r ao\ ®
de=Eoao { - [—+A (—rg) } cos O+ D p@*h
=0

Qo

ao 2/+2
X (7) Pyv1(cos 6)}
r [e2]
¢i=Eoao {—(1 +2)_-cos 0+4 DI
0 =0

r 2/+1
X (a_) Py11(cos 0)} .

0

(2.15)

(2.16)

Here the first term on the right-hand side corresponds to
the potential for a sphere in the uniform field and the re-
maining terms represent deviations. In this expression,
the effects of mirror symmetry are already taken into ac-
count. The perturbative solutions of the coefficients
@*D and ¢ are given in Appendix B.
The normal component of the force is expressed as
F,= >, F®Py(cos ). (2.16)
=0
The explicit forms of coefficients F® are given in
Appendix C.

§3. Deformation in Static Field

The equilibrium shape of a vesicle in electric field has
been the subject of various theoretical studies in the past.
These studies have treated only the cases in which the
lipid bilayers are perfect insulators. We address ourselves
to the problems involving bilayers which can be regarded
as conductors.
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3.1 Balance equations for forces

According to Helfrich,? the elastic energy of a mem-
brane is given by the curvature elastic energy

V=K/2Sds(H—-Ho)2, @3.1)

where k is the curvature-elastic modulus, H is the average
curvature and H, is its equilibrium value. The energy as-
sociated with the Gaussian curvature is ignored since it
makes no contribution in the present problem. We
assume that the internal stretching force is so strong that
the surface area of the vesicle remains unchanged. This
assumption is consistent with the statement made in the
previous section about the tangential component of the
electric force.

The curvature H for the surface r=f(0) is expressed
aSlO)

QS 3 sin 0= (£ +f)f cos 0
h (f*+/"2)/*f sin 6 '
Here f'=0f/96 and f" =0*f/ 30".

The equation of motion may be derived by the use of
the Lagrangian density ¥ defined as

(3.2)

K- V=S$ de, - (3.3)
where K is the kinetic energy. In the case of a static prob-
lem, K=0 and the equation of motion becomes the equa-
tion for the force balance
doy d*9¥ 4% 7 ds
d6dg’ de*ag” ag "do-
Here F, is the electric force per unit area and d S is the sur-
face element given by dS=2nfVf*+f'*sin 6 d6.
For small deformations, ¥V is written in terms of g of
eq. (2.14) as

3.4

1 1 1
V=8mcgsin 6do {E (g” —g’ cos 0)24-392_19'2} .

(3.5)

In deriving eq. (3.5), use has been made of the condi-
tion that the surface area remains constant. The final
form of the balance equation turns out to be

4K
— I+ 1’QI+1)gu=F%P. (3.6)
0

The explicit form of F$ is given in Appendix C.

3.2 Equilibrium shape

In this subsection, eq. (3.6) is used to discuss the condi-
tions for the existence of equilibrium shape. The
coefficient F % contains contributions from g, 92— and
gx+2. As can be seen easily from eq. (3.6) and Appendix
C, gu is proportional to E?. Thus, for a relatively weak
field, the term involving g4> in F @D may be ignored. It
should be noted that the equilibrium shape is attained
only when the field is rather weak. Since the quadrupole
deformation is dominant in the present situation, we first
discuss this type of deformation. Equation (3.6) then
reduces to

1143
C9.=J 3.7
where
, o, 3 x*—1
J=0083anm (3.8)
Cy=1aa Ky 109X 734 (3.9)
a ° 35(x+2)
and x=a;/g., and ¢; is taken to be equal to &..
By defining the quantity E, as
E.= \/@—(—)—_53 , (3.10)
17 ap
eq. (3.9) can be written as
144] e E§4(x>—1)(109x—34)
T [1_ EX  17(x+2) } G40

As a function of x and ve.Eo/E,, g. can be given by
the expression

140(x2— 1)(x+2)

gr=— (.12)

1 [E.\
17(x+2) — (E,) —4(x2—1)(109x—34)

It will be shown in the next section that, in order for an
equilibrium shape to exist, the coefficient C, must be
positive. For 34/109<x<1, C, is positive so that an
oblate equilibrium shape always exists. For x>1 or
x<34/109, an equilibrium shape can exist only if the elec-
tric field E, satisfies the condition

17(x+2)° 12
£e4(x*—1)(109x— 34)

Ey<Ey(lg,| =0)=E,

(3.13)

The shape is prolate for x> 1 and oblate for x<34/109.
The ratio, ve.Fo/E., for | g,| =0 is plotted against x in
Fig. 1.

The above argument is based on the linearized expres-
sions, and the conditions derived therefrom are certainly
unsatisfactory. In order to find more realistic conditions,
we need to go beyond the present degree of perturbation.
However, in estimating the field strength, Eo, for which
an equilibrium shape exists, we will be satisfied by merely
requiring that |g,! remains less than a certain small
value. Figure 1 also shows the ratios, ve.Eo/E,, for
lg21=1/2 and 1/4. It should be noted that ve.E, is of
the same order of magnitude as E, as long as g/ g. is not
very close to unity. Since E, is inversely proportional to
ag/ 2, a small vesicle can have an equilibrium shape even
for a rather large external field.

For a vesicle having the radius of 10um and
Kk=35%10""%erg,>Y E,is 472 V-cm ™. If the fluids both in-
side and outside this vesicle are water (¢.=81) and the
conductivity ratio, x, is 0.5, Eo(lg21 =1/2)is 40 V-cm™".
For x=2.0, Eo(lg21=1/2)is 23 V-cm™".

It can be shown that g, associated with the octapole
deformation is given as

108 (C,
g4 (—) (92)

= 3.14
35 \C, ( )

where
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Fig. 1.

Ve Ey/ E, vs 0;/ g, for various values of g, as indicated. Note that a linear scale is used for 0< g;/g.< 1, whereas the

scale is logarithmic for ¢;/0,> 1. The broken line corresponds to ;/g.=34/109.

(&) (b)

Fig. 2. Shapes of vesicles (a) for x=2 and ¢g,=1/2 (g,=0.084) and
(b) for x=1/2 and g,=—1/2 (g,=0.149).

_900x ; 1403x— 1004
T a4 77(3x+4)

For a finite g,, C,/Cs can be shown to be positive and,
hence, g4 is positive. Figure 2 shows the shapes of vesicles
for x=1/2 and g,= —1/2 (g4=0.149) as well as for x=2
and g,=1/2 (g4=0.084).

§4.

The electric fields used in some of the experiments such
as that of Itoh et al.V and Kinosita ef al.? are fairly strong
so that the vesicles were ruptured if the fields were kept
for sufficiently long times. Therefore, the equilibrium
shape will not be attained in such cases. When pulse
fields were utilized, the vesicles were found to undergo
deformation without being ruptured and exhibit relaxa-
tional phenomena after the fields were switched off. We
propose a simple model which describes the time varia-
tion of the vesicle shape.

(3.15)

4

Model of Dynamics

4.1 Equations of motion
The model is based on the assumptions that the vesicle

is initially spherical and that the deformation is small. In
addition, it is assumed that the electric field is adiabatical-
ly determined by the equations given in §2.

The dynamical deformation of the vesicle is closely
coupled with the motions of fluid surrounding the mem-
brane. For a satisfactory description of the dynamics,
complex hydrodynamical calculations are required. In
the present discussion, we simply assume that the equa-
tion for the fluid motion consists of the inertial term and
the term corresponding to the resistance of the fluid. The
forces associated with the elastic as well as Maxwell
stresses are included in the equation. The inertial term
represents the mass of the fluid which is forced to move
by the motion of the membrane. The kinetic energy is
then given by

1, e

K=§ Epmvn dS=Spm W 7 sin 6 d6,
if only the fluid motion normal to the surface is assumed
to contribute to the inertial term. Here py, is the effective
mass per unit area, v, is the normal component of the ve-
locity of the surface and the dot designates the time
derivative. py, is not the mass per unit area of the mem-
brane but includes the mass of the fluid forced to move
by the membrane as mentioned above.

For small deviations, one obtains

@.1)

K=na3§pmg'2 sin 6 d6

© 1
=27pnds Y, — (gu)*-

2
=14l+1 (4.2)

P is taken to be constant. The equation of motion is
derived from the Lagrangian density eq. (3.4) and given
as

did¥ dog d ¥ 4%
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where the first term on the right-hand side represents the
effect of the fluid resistance which is assumed to be pro-
portional to the volume swept by the surface in unit time.
The inertial and resistance terms in eq. (4.3) add two
terms to the balance equation, eq. (3.6), and the resulting
equation of motion in the perturbative treatment is

4K
Pmdofut ya3g2,+a— (I+12Q1+1)g,=F% . 4.4)
0

4.2  Analytic solutions and numerical analysis

Within the approximation employed in the static case,
the final dynamical equations turn out to be simple coupl-
ed linear differential equations given by

61(21—1)
(41=3)@dI—1)

with go=1/2. The quantities J, C, and C, are defined in
§3.2.

After the electric field is switched off, the terms involv-
ing the electric field in eqd. (4.5) vanish and the dynamical
equations become those of uncoupled damped harmonic
oscillators. It can be seen that, if C is negative, the defor-
mation becomes unbound and the equilibrium shape
does not exist. This is the basis for the discussion of §3.2.
We introduce the mass factor, v, as the ratio of the total
effective inertial mass to the mass of the fluid inside the
vesicle. Then uy, is related to v as

PuoGor+ yasgu+ Cugu= Jga-2 4.5)

,_An 3
pm4na0=? PwayV, 4.6)
where py is the mass per unit volume of the fluid.

Equations for g, and g, are obtained from eqgs. (4.5)
and (4.6) as

G2+2Ig2+D29,=2G 4.7
) _ 216
g4+2Fg4+D4g4=§ Gg» 4.8)
where
3y
r= s 4.9)
By defining K,, K4 and K as
=22 g =2k, (4.10)
VPwao 4
and
9¢.Ej
= 4.11)

T 8nvaipy
other coefficients in eqs. (4.7) and (4.8) are expressed as
2(x2—1)(109x—34)

D,=K;—K¢g 33(x12) , 4.12)
D4:K4—K5w (4.13)
773x+4)
and
x?=1
G=Ks m . 4.14)
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We now solve these equations for a pulse field having
the amplitude of E, and the duration of #,. The vesicle is
initially a sphere of radius a,. One can easily obtain the
exact solution of eq. (4.7) as

gz=E l—e“”C(ﬁt)—I:e_”S(ﬁt) (4.15)

D, i) ’ )

where B=+I|I*—D,|. The functions C(x)=cosh (x)
and S (x)=sinh (x) for I"*> D, while C (x)=cos (x) and
S (x)=sin (x) for I'’*<D,. As long as t, is not large, the
third term in the right-hand side of eq. (4.7) has a negligi-
ble effect on the dynamics. In particular, eq. (4.15) at
t=t, reduces to

; _Gt0{1+e_zno_1}
g:(l)=" 2t |

Since It (to/ ao) and Gto/ ' E5(to/ ao), the deforma-
tion at £, is proportional to E§. Furthermore, with a fixed
value of E,, the degree of the deviation from a sphere,
g2(t0), is a function of only o/ ao.

The equations determining g, and g, after the field is
turned off are obtained from egs. (4.7) and (4.8) by set-
ting Kr=0. They are

g2+21"g2+K2g2:O
g4+2Fg4+K4g4=0

(4.16)

(4.17)
(4.18)

Equations (4.17) and (4.18) are solved under the condi-
tion that g, and g4 connect smoothly with the solutions at
t=ty (eq. (4.16)) and a similar expression for g.(f). The
result for g, is

1
ga=e"* {gz(fo)C(aT)‘F; (!Jz(to)+ng(to))S(aT)} ;

(4.19)

where o= v | I'*~K,| and t=¢—t,. The function g, con-
tinues to increase after the field is turned off but eventual-
ly exhibits either a relaxational time variation or a
damped oscillation, depending on I'*—K,>0 or <0.

The maximum of g, occurs at time fmax Which satisfies
the equation

S((tmax—1)) - aga(to)

=— . 4.20
Ca(tmax—1)) 1G2(t0)+K29:(%) *-20
The value of g, at fm.x may be expressed as
92 (Fmax) = g2 (o) @ 7 (rex™10)
217, (¢ 1 [g2(t0) V
x\/1+ g2 °)+—(92( 0)). 4.21)
K>9:(t0) Kz \g2(to)

The relaxation time, #, is equal to 1/I" for the damped
oscillation and #,=(I"+«)/ K, for the exponential damp-
ing. In particular, for the critical damping, the relaxation
time is 1/ VK.

Equations (4.9) and (4.10) for g, have been solved
analytically, but the explicit expressions are somewhat
cumbersome and will not be given.

Numerical calculations of g, and g, have been carried
out for a typical set of values of E;=500 V-cm™!, ;=10
pm and #,=500pus.” The conditions for perturbative
calculations are satisfied for this set of values. Figures 3
and 4 show the calculated time developments of deforma-
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tion. Also shown are the results of calculation for
Ey=500V-cm™', ap=100 pum and #,=5000 ps. Since the
values for p and v are not well established, y=7.5

g-cm~%~!, one-half the Stokes resistance force, and

0.50
gz : 100 m
0.25 10pm
0.00
0.25+—
9 [
L 100 im
0 00— /: 10pm \\ .
0 to tmax tmax+tr

Fig. 3. Time developments of g, and g4 calculated for x=2. The
calculations were performed for ¢,=10 and 100 ym with the con-
straint @,/ f,=10 pm/500 ps. E, is fixed at 500 V-cm™" in the calcula-
tions. The linear scales for the regions 0<t<ty, {(<t<lpa and £y
<t <ttt are different and depend strongly on a,. The definitions
and values of f,, f,.; and ¢, are given in the text.

0.00
9,
-0.25
[ oo N I
-0.50
0.25+—
9, T
1004mM
/II 10pm \\
0.00
0 to tmax trnax"tr

Fig. 4. Time developments of g, and g, calculated for x=0.2. The
calculations were performed for a,=10 and 100 pm with the con-
straint @,/ t,=10 pm/500 ps. E, is fixed at 500 V-cm™" in the calcula-
tions. The linear scales for the regions 0<¢<ty, t(<t <t and f;,,
< t< tpax+t, are different and depend strongly on a,. The definitions
and values of ¢, .., and ¢, are given in the text.
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y=10 were used. Calculations were performed using ex-
act solutions. Since g, and g. for 0<¢<?, in the figures
are indistinguishable for two quite different values of a,
if ao/ 1y is the same, one can conclude that the approx-
imate expression for g,(#), eq. (4.16), and a similar ex-
pression for g.(?,) are adequate and that the perturba-
tion approach is valid. In the approximation of small ¢,
g2(tmax)/ g2(0) is a function of ¢/ a, and independent of
Ey. It can be seen from eqs. (4.20) and (4.21) that the
ratio ¢z(Zmax)/g2(%0) is determined by fo/a,. Since the
calculations of Figs. 3 and 4 were carried out with #,/ao
held fixed, g2(#max)/ g2(%o) is the same for all the values of
ao. For 1> tq.x, the time variation is given by the exponen-
tial damping, nearly independent of ao. One can see that
g4 damps out more rapidly than g,. In the present case,
the relaxation time of g, is approximately 4/25 times that
of g,. One expects that, for x>1, both g, and g4 are
always positive as shown in Fig. 3 for x=2. For x<1, ¢»
is always negative while g, is always positive as ex-
emplified by Fig. 4 for x=0.2.

It should be noted that the actual values of fy.x and ¢,

' are quite dependent on the values of ao. For example, 7.«

and ¢, for ao=10 um are 3.58¢, and 21.5¢,, respectively,
while the corresponding values for ap=100 um are #myax
=6.51¢, and ¢,=21500¢,. It can be shown that 7, is pro-
portional to @, in the limit of large resistance force.
The effect of resistance force is shown in Fig. 5. The
curve 1 is the same as that in Fig. 3 and represents the
result of the calculation for Eq=500 V-cm™}, #,=500 ps,
ao=10 ym and y=7.5 g-cm %™, The curves 2 and 3 cor-
respond to the calculations for y twice and three times
that of curve 1, respectively. As expected, g,(#,) depends
strongly on the resistance force. It is interesting to note

0.50
g, | 1
=
0.25+
2
/——_—-—
3 &
0.00
0.25+—

- - 2 N
0 t, tmax tmax+tr

Fig. 5. Effects of resistance on time developments of g, and g, for
x=2. Calculations were performed for E,=500 V-cm™!, £,=500 us
and a,=10 pm. Curves 1, 2 and 3 correspond to the calculations with
y=7.5, 15 and 22.5 g-cm %", respectively. Curve 1 is also shown in
Fig. 3.

0.00
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that the dependence of g2 (#max)/ g2 (%) on y is much more
pronounced.

In the calculations described above, the mass factor, v,
was assumed to be 10. In order to study the dependence
of the time development of deformation on this factor,
calculations were carried out for various values of v. It
was found that (fmax—1%0)/% is approximately propor-
tional to v. For example, in the case of x=2, (fmax— o)/ o
is 3.57 for v=10, 1.10 for v=3 and 0.37 for v=1. The
maximum deformation, g, (#m.x), depends relatively weak-
ly on v, but g,(#) and therefore g2 (¢ma)/g2(%o) depend
sensitively on v. On the other hand, the relaxation time,
t., is hardly affected by the choice of the value for v.

§5. Conclusions

The deformation of vesicles with conducting mem-
branes under the influence of electric fields has been
shown to critically depend on the relative values of the
conductivities inside and outside the vesicle. When the
field is weak, the static equilibrium shapes could be
calculated by a perturbative method. If the field is
strong, this type of calculation is useful when the field is
applied only for a short time. Although vesicles usually
have insulating membranes, they were assumed to
become conducting immediately after a strong field is ap-
plied. If the membrane remains insulating for a finite
period of time, the present theory needs modifications.
Calculations based on such modifications are being per-
formed and will be reported elsewhere.
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Appendix A: Solutions for an Ellipsoid of Rotation

Spheroidal coordinates are denoted as &, #, and (.
They are related to the Cartesian coordinates in the
following way:

z=cén, p=vx’+y*=cV(EFNA-1n*)
x=pcos(¢), y=psin(p),
where the upper (lower) sign in p corresponds to the pro-
late (oblate) spheroidal coordinates, and c is a parameter
to be chosen.

The surface of a vesicle is assumed to be specified in
the Cartesian coordinates as

(A1

z2

a2+ b?
Then, by defining c= v |b*—a?l, the surface is given in
the spheroidal coordinates simply as

x2+ 2
1. (A-2)

a

E=—=¢,, (A-3)
c

In this case, solutions for eq. (2.2) with the boundary con-

~ ditions (2.3) and (2.4) are easily obtained. They are ex-

pressed as
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¢.= —Eoc[{+AF({)]

¢i=—EoBcén=—E,Bz, (A-4)
where the coefficients A and B are given as
A= (6.—0i)¢o
GiF (o) — 0.0 F (&)
and
B Fe[F (£o) — EoF " (&) (A-5)

GiF (&)~ 0eloF ' (&)

Furthermore, the functions F'(£) and F’(¢£) are related
to the Legendre function of the second kind of the order

one Q;(&) as

d

F(&)=—Q:1(&)

F(&)=0.(%), dz

for prolate and

da .
F(&)=—7 Qi ¢)

F(&)=0:G9), e

for oblate.

We note that the electric field inside the vesicle is
parallel to the applied field and is constant.

The normal component of the force per unit area, eq.
(2.8), is expressed as

LR oi \ &
F,=——E{B? {(5@1)[(—) +1-2 (—)]
8n Oe Ee

n’ &i

T e 1} ’
where the upper (lower) sign corresponds to the prolate
(oblate) shape. The area element dS s
2nab[1—(1—b*/a*)n*1"? dn. Since the possible range of the
values & is &>1 for a prolate case and &, >0 for an
oblate case and —1=<#x<1, it is always satisfied that
EtF1>0 and £;Fn*>0. Therefore, the force induces
prolate deformation if (oi/0.)*>2(&;/€.)—1 and oblate
deformation otherwise. This result is the same as that in
the case of a sphere.

(A-6)

Appendix B: Coefficients ¢ and ¢{"*" in eq. (2.16)

To the first order in g, these coeffcients are shown to
be

3Q21+1)
41+1

Q@I+ __
D =

L 3@tDE—a) 20+2
92T I )+ I+ 1)a; 4+5

g21+2

and
@y _ 321+ 2)o.

QI+2)@d1+3)
T QI42)0.+ 21+ Do

41+5

gai+2.

Appendix C: Coefficients F " in eq. (2.17) and F % in
eqs. (3.6) and (4.4)

Up to the first order in g5, F©@ is given as
9¢. 1 { & 2 -
F<2'>=——E2————{ 242 1) St = o
872 Grofoy \3 T 1otz non
21—2)2I—-1)
2¢ g~
“4l-3)4l—-1)

_210QI+1)
(41— 1)(41+3)

2

g2
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QI+ 1)QI+2)(21+3) 2
- A+ gau+2 QD _ el 9¢.E¢ 1 _8_‘
(41+3)(41+5) Fegr =F<“+ : -121——1)|g9z
ge—ai [I—1)21 QI+1y 87 Q+ai/o) U \e
-2 3 [—F §21_1)+—m i(ZHI)] 5 21—1)21 + 8/2+41—1
LN @=3)@i-n " =@+
- (8—— 1) 3 ‘QI+ 1)¢§2’+‘>} ) QI+ 1)Q2I+2) }
. ) ﬁ . oe @t 3@ai+s) |
€re we acnne
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