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Dynamics of vesicle deformation in a pulsed electric field has been studied in the framework of perturbation theory.
The membrane is assumed to be initially insulating and to become a conductor after a cerain period of time, £, by elec-
troporation. The dynamical behavior was found to be influenced not only by £, but also by the ratio of the conductivity

inside the vesicle and that outside.
KEYWORDS:

§1. Introductioh

When a vesicle is subjected to a strong electric field, it
often becomes porous, a phenomenon called electropora-
tion."? Thus, the membrane of the vesicle can be
regarded as conducting medium. In an earlier report?
(called I hereafter), types of static deformation of
vesicles having conducting membrane in static fields and
dynamical behavior in pulse fields have been discussed. It
was found that the deformation depends critically on the
ratio of the conductivity inside the vesicle to that outside.

In I'it was assumed that the electroporation occurs im-
mediately after the field is turned on. However, in prac-
tice, the membrane may remain insulating for a signifi-
cant period of time. If this is indeed the case, it is
necessary to take into account the non-conducting mem-
brane in order to describe the deformation dynamics of
vesicles. Helfrich studied*® the shape of a spherical vesi-
cle having insulating lipid bilayer, but his discussion did
not include the dynamical behavior. In this report, we
present the results of investigations of dynamics incor-
porating finite periods of insulating phase of membrane.

§2. Formulation

2.1 Electric fields and electric forces

Two fundamental equations determining electric fields
are 1) the current conservation for a stationary state, div
j=0, and 2) the ohm’s law, j=0¢E. These equations are
solved under the following boundary conditions. The
asymptotic form of the field at infinity is E~ E,Z, where
E, is the field strength of the field applied in the z-direc-
tion. The boundary conditions on the membrane sur-
faces depend on whether the membrane is a conductor or
an insulator.

If the membrane is an insulator, the normal compo-
nent of the current at the vesicle surface must vanish.
This leads to a condition that the field outside the vesicle,
E., has no normal component, E.,=0, at the surface.
The field is determined uniquely by this condition.

The case of a conducting membrane has been discussed
in I. It is necessary to consider the field inside the vesicle,

- E;, as well as E.. The boundary condition for the tangen-
tial component of the field is given as E,=F, and that
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for the normal component is 6;Ej,=0cEe,.*

The electric force exerted on the vesicle surface may be
calculated from the Maxwell tensor, and the normal com-
ponent is

&e
F,=——(E«) 1)
87

for an insulating membrane, where &. is the dielectric con-
stant of the outside medium.

2.2  Small deformation from a spherical vesicle
The shape of a vesicle is represented in the polar coor-
dinates by

r=a(l1+¢(9)), ?)

where the deviation g(f) is expressed in terms of the
Legendre polynomials as

g9(®) =§] 9P (cos 6). 3)

The coefficients, ¢’s, are assumed to be small and the per-
turbation method will be used in the following discus-
sions.

The electric potentials ¢. and ¢; were determined in I
for a conducting membrane. It can be shown that the
potential ¢, for an insulating membrane is derived from
¢. for a conducting membrane by setting 0;=0. The
result is

2
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The normal component of the force acting on the vesicle
can be derived from eqgs. (1) and (4), and is given by

*These boundary conditions are also given by eq. (2.4) of I. However, it
contains typographical errors. ¢’s should appear in the experssion for
the boundary conditions of normal components as given herein.
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The leading term of this equation is identical to the ex-
pression derived by Helfrich and always produces a pro-
late deformation of a vesicle.

2.3 Model of dynamics

In I, equations of membrane motion have been con-
structed from the Lagrangean consisting of the inertial as
well as curvature elastic energy terms. The equations also
involve the electric force and the force due to the
resistance of the surrounding fluid. They are reduced to
linear coupled equations given as

G2+ 2Ig,+Dr9,=2G ©)
. ) 216
gat2rg, +D4g4="3—5“ Gg», ®
where D,, D, and G are given by
61
D;=K; +£ Ke ' )
81
D4=K4+%KE (10)
1
G=Z Kk (11)

for an insulating membrane. I', Kz, K> and K, are defined
in I and depend on the field strength Ej, the vesicle radius
ao and the dielectric constant of the fluid outside the vesi-
cle. They also contain the fluid resistance coefficient, p,
the mass factor, v, and the curvature elastic modulus, «.
In the case of a conducting membrane, similar expres-
sions for D,, D, and G are given in 1.

If the applied field is switched off, the dynamical equa-
tions are given by eqgs. (8) and (9) with D,=K,, D,=K,
and G=0. D, D, and G for a conductiong membrane de-
pend on the ratio x=g;/ o.. It was shown that the driving
force term, G, is positive (negative) for x> 1 (x<1). The
sign of G determines the mode of deformation; prolate if
G >0 and oblate if G<0. In contrast, G for an insulating
membrane is always positive as can be seen from eq. (11).
Thus, the deformation is always prolate as pointed out
by Helfrich.®

It should be noted from eqs. (9) and (10) that the elec-
tric field gives positive contributions to the restoring
force constants. On the other hand, it was shown in I
that the electric field may give negative contributions for
certain values of x.

§3. Calculations

In a typical experiment, a pulsed field with the dura-
tion of #, is applied and the time dependence of the defor-
mation is measured.? If the field is strong enough, the
electro-poration occurs at t=t, (<ty). After the field is
switched off, the deformation continues to increase,
reaching a maximum at #=t.,., and it decreases nearly ex-
ponentially to zero with the time constant #,. The expres-
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sion for Zna.x in terms of g,(#)) and g»(%) is given in I. For a
certain ranges of x and #,, g, reaches a maximum only
before the electric field is turned off and it decreases to
zero monotonically thereafter. In such cases, fyn.« does
not exist. .

Calculations have been carried out for a typical set of
values of E;=500 Vem ™!, #,=>500 ps and @y=10 pm. The
values of the parameters, v and x were the same as those
used in I. The fluid resistance coefficient, y, was set to
7.5gem %! as in I. For this set of parameters,
t./ty=21.5. Figure 1 shows the time evolution of g, and
ga for x=2. Calculations were perfomed for #,/#=0, 0.5
and 1. The value of #,,x was found nearly independent of
t,. The ratio fma/ 1 ranges from 3.58 for t,/£,=0 to 3.45
for ¢,/t,=1. It can be seen that the overall behavior is
essentially the same for different #,. The maximum defor-
mation is attained for #,/#=0.5 in this case. It can be
shown that the driving force term, G, for a conducting
membrane coincides with that for an inslulating mem-
brane if x=2/3(1++7)=2.43. Since eq. (8) gives
9= Gt*+0O(¢*) for small values of ¢, the initial behavior
is the same irrespective of whether the membrane is con-
ducting or non-conducting. Figure 2 shows the time
dependences of g, and g, for x=2.43 with ¢,/£,=0, 0.5
and 1. The difference in the time dependence for larger
values of ¢ is due to the difference between the restoring
force D, for the conducting membrane and that for the
non-conducting membrane. D, for a conducting mem-
brane in a strong field can be very small and even be
negative in contrast to D, given by eq. (9) for a non-con-
ducting membrane.

The results of calculations for x=0.2 are depicted in
Fig. 3. The time evolution is strongly dependent on ¢,/ f,
contrary to that for x> 1. Since the deformation of a con-
ducting membrane is oblate for x< 1, g, remains negative
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Fig. 1. Time evolution of g, and g, calculated for x=2. Calculations

were made for #,/%=0, 0.5 and 1. The numbers in the figure repre-
sent the values of #,/f,. Note that the linear scales for the regions
0<t<ty, ly<t<tp and fo,, <t<f,. +f are different. The values of
tmax/ by and £,/ 1, are given in the text.
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Fig. 2. Time evolution of g, and g, calculated for x=2.43. Calcula-
tions were made for #,/#,=0, 0.5 and 1. The numbers in the figure
represent the values of #,/f,. Note that the linear scales for the
regions 0<t<ty, ty<t<tna and f,, <t<t,.+¢ are different. The
values of f,,./, and %,/, are given in the text.

for £,=0 as concluded in I. For #,%0, g- always increases
initially. However, if ¢, is small the dynamics is over-
whelmed by that for a conducting membrane and the
deformation  eventually becomes  oblate. For
0<1t,/1<0.46, g, becomes eventually negative and thus
has two extrema, the one at 1<f, and the other at 1=
tmax > to- tmax/ to fOT £,/ ty=0and 0.25 are 3.56 and 3.82, re-
spectively. For ¢,/#,>0.74, g, continues to increase after
t, and reaches a maximum at 7= fuax > fo. The ratio fmax/ fo
for t,/1,=0.75 and 1 are 2.02 and 3.45, respectively. For
0.46 < t,<0.74, g, reaches a maximum value at a certain
1<t and then decreases monotonically to zero. In this
case, Imax does not exist as pointed out above. In Fig. 3,
the result of calculation for ¢,/%=0.5 is presented with
tmax/ to set arbitrarily to 4.

§4. Conclusion

In the present model the motion of the fluid surround-
ing the membrane is assumed to be describable in terms
of the mass factor, v, and the fluid resistance coefficient,
. In order to go beyond this model, one needs to use the
hydrodynamic equation of the fluid. However, even the
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Fig. 3. Time evolution of g, and g, calculated for x=0.2. Calculations

were made for #,/£=0, 0.5 and 1. The numbers in the figure repre-
sent the values of ¢,/f,. Note that the linear scales for the regions
0<t<ty, tg<t<tpa and t,, <t<ty,tt are different. The values of
tmax/ To and ./ 1, are given in the text.

simplified model used in the present calculations appears
to give reasonable description of the dynamics of the vesi-
cle deformation, and it may be useful in analyzing ex-
perimental data obtained in the field of electroporation
of cells.
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