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Deformation of a vesicle with an insulating membrane under an external electric field is considered. Application of a
step-function field, under which the eventual form is prolate, is shown to transientiy induce an oblate deformation, pro-
vided that the conditions of the surrounding medium are chosen properly. It is further demonstrated that alternating elec-
tric fields induce deformation in a frequency-dependent manner; the deformation at low frequencies is always a prolate
one, whereas the steady-state deformation at high frequencies is either prolate or oblate depending on the medium condi-
tions. If this frequency dependence is experimentally observable, the capacitance and curvature elastic modulus of the
membrane as well as the intravesicular conductance can be estimated directly from the data. The field-induced deforma-
tion may serve as a novel experimental method in cell biology.
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§1. Introduction

Closed-membrane vesicles such as cells or liposomes
undergo deformations when they are exposed to an elec-
tric field. Analysis of the pattern and extent of the defor-
mation should vyield information on electrical and
mechanical properties of the membrane and of the vesicle
interior. The theoretical basis for such analyses,
however, appears rather limited.

Helfrich? has shown that, when the electrical conduc-
tance of the membrane is negligibly small, the deforma-
tion of a spherical vesicle will always be toward a prolate
ellipsoid with its major axis parallel to the field. Ionic con-
ductance of normal cell membranes and lipid bilayers are
in fact very small.? Under an intense electric field, on the
other hand, a dramatic increase in the membrane conduc-
tance may take place,>” a phenomenon called elec-
troporation. For the highly conductive membrane,
theory®® predicts both prolate and oblate deformations;
the direction of the deformation is determined by the
ratio of the specific conductivity of the medium inside the
vesicle to that outside.

None of the above theories take into account the finite
time constant with which the membrane capacitance is
charged. During this transient phase, as we show below,
the direction of the force acting on the membrane can be
different from the steady-state force. A vesicle with an in-
sulating membrane, for which the eventual form is pro-
late, is initially subjected to a force leading to oblate
deformation, provided the internal conductivity is
smaller than the external one. This requirement for the
conductivity ratio is fulfilled by most cells under
physiological conditions.

In this paper, we first calculate the transient behavior
of a vesicle, with an insulating membrane, in response to
a step-function electric field. Then we calculate the
steady-state deformation achieved under an alternating
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(sinusoidal) electric field. In this case, the direction and
extent of deformation depend on the frequency of the
alternating field. Oblate deformation expected at high fre-
quencies is much larger than that which occurs during the
short transient period under a step-function field of
similar magnitude. For the purpose of the experimental
estimation of the intracellular conductance, therefore,
stimulation by an alternating field is the method of
choice. From the frequency dependence, in addition, one
can directly estimate the time constant for charging the
membrane capacitance. The extent of deformation may
also be related to the elastic modulus of the membrane.

Deformation of individual cells (or liposomes) can be
observed under a microscope. We believe that the
analysis of field-induced deformation will prove useful in
assessing the electrical and mechanical properties of a
single, intact cell without penetrating it with a microelec-
trode and without causing electroporation.

The remainder of this paper is organized as follows. In
§2, we derive dynamical equations that determine the elec-
tric field in and around the vesicle, eq. (2.17), and the in-
itial conditions, eq. (2.20), taking into account the
capacitance and conductance of the membrane. In §3,
these equations are solved and the electric force acting on
the cell is derived for the case of a homogeneous mem-
brane for which the capacitance (or dielectric constant)
and conductance are assumed to be constant and to not
vary with time. The deformations under step-function
fields are discussed in subsection 3.2. In subsection 3.3,
the deformations under alternating electric fields are dis-
cussed in detail, and in 3.4, their implications on ex-
perimental determination of cellular properties are ex-
plained.

§2. Fundamental Equations for Electric Potentials

2.1 Fundamental equations
We consider the situation in which a vesicle is placed in
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an aqueous solution. The conductivity and dielectric con-
stant of the medium inside the vesicle are, respectively, a;
and ¢;, and those of the external medium are . and é&..
The conductivity of the membrane of the vesicle is
denoted as o, and the dielectric constant as &n. In the
following, the suffices i, e, and m are used to distinguish
quantities related, respectively, to the internal, external
and intramembrane regions of the vesicle.

Fundamental equations to determine the electric field
are the continuity equation for the electric charge and cur-
rent, dp/dt+div J=0, the relationship between the cur-
rent and the field, J=0F, and one of the Maxwell equa-
tions, 4np=div ¢E. Since we consider only the case of an
applied electric field, we neglect the small effects of the in-
duced magnetic field. Therefore the electric field can be re-
garded as irrotational, rot E=0, and it is expressed in
terms of the electric potential ¢ as E= —grad ¢. Combin-
ing all together, we immediately arrive at the fundamen-
tal equation,

L 2 div (¢ grad ¢)+div (o grad ¢)=0.

47 ot
We consider only the case in which the quantities related
to the aqueous media, a;, o, & and &, are constant. In
this section, &, and oy, are allowed to vary with time and
position in order for the theory to be also applicable to
the case in which electroporation takes place. By the use
of operators defined as

@2.1)

10
Ly=——¢s+as; (Bf=¢e,i, m),

47 Ot 2.2)
eq. (2.1) reduces to
LyAgs=0 (B=¢, i) 2.3)

for the aqueous medium. In usual experimental setups, it
can be assumed that there is no local charge in the
medium. We therefore use a more restrictive equation
than eq. (2.3),

Agp=0 (B=e, 1),

for the potentials inside and outside the vesicle.
If we denote the strength of the applied field by Ey(¢),
the asymptotic form of the potential ¢. at infinity is

¢ —> —Eo(1)z. 2.5)

Here the z-axis is taken along the direction of the applied
field. One of the boundary conditions for the potentials
on the vesicle surfaces is related to rot E=0 and it is the
continuity of the potentials given by

Ge=Pm

2.4)

on the outer surface (2.6a)

and

on the inner surface.

dn=0; (2.6b)

The other condition is related to the continuity equation,
dp/at+div J=0, and is expressed as

L.E,.=L,E,, on the outher surface (2.7a)

and
Li Ein = Lm Emn

on the inner surface. (2.7b)
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Here Ej, is the normal component of the electric field Ej
on the surface. These boundary conditions (2.7) are valid
only if the charge carrier density in the surrounding
medium is negligible.

2.2 Equations in the multipole expansion

The shape of the vesicle is assumed to be axiasym-
metric around the z-axis. Then the outer and inner sur-
faces of the vesicle are, respectively, expressed in polar
coordinates as

r(0, 1)=fou (0, 1)=a(t)[1+gou (8, )] (2.82)
for the outer surface and
r(0, t)=rn(, t)=b(t)[1+gun(8, t)] (2.8b)

for the inner surface. The membrane of the vesicle is
assumed to be very thin in comparison with the radius of
the vesicle. Thus it is reasonable to approximate gou (8, t)
=gin (0, t), which we write simply as g(6, ¢). In the pre-
sent work, we consider only small deformations of
quadrupole type so that g(6, ¢) is written as

Jou=gin=9(0, 1) =g:(¢) P, (cos 0). (2.8¢)

Furthermore, it is assumed that the vesicle is a sphere of
outer radius ao and inner radius b, at the onset of the elec-
tric field. Therefore we expand relevant quantities associ-
ated with the electric fields in terms of g, and take into
account only the lowest order, O((g2)°). In this approx-
imation, @(¢) and b(¢) in eqs. (2.8) remain constant,
namely a(t)=a, and b(t)=by. Higher order calcula-
tions”® are extremely complicated when the membrane in-
terior is taken into consideration, as in the present work.

The potentials ¢. and ¢, satisfy eq. (2.4) and are thus ex-
pressed as

1+2

ao
¢.= —E,(t)rcos 9+ZA,(t)FP, (cos0) (2.9a)
!
and

(2.9b)

rl

éi=>,D/(t) —= P/ (cos ),
[ ao

where A,(t)’s and D, (t)’s are functions of time yet to be

determined. The intramembrane potential ¢, is express-
ed as

dm= D, Mi(r, t)P;(cos 0) (2.10)
!

where M,(r, t)’s are functions of both radius r and time
t. This potential must satisfy eq. (2.1). Inserting eq.
(2.10) into eq. (2.1) and multiplying P, (cos 8) and in-
tegrating over the angle 6, we arrive at somewhat com-
plicated coupled equations for M,. But it can be shown
that in the limit of a very thin membrane, there is no need
to solve the equations. The functions M,(r, ¢t) in eq.
(2.10) are completely determined by boundary condi-
tions, as is discussed below.

The boundary conditions (2.6) give rise to the follow-
ing relations in the lowest order with respect to the defor-
mation g(6, ¢):

—Eo(t)5,1+A,(t)=alM,(ao, 1) (2.11a)
0
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and

b\ 1
Di(t) (a—;’)=a—0 Mi(bo, 1). @.11b)

On the other hand, the boundary conditions (2.7) yield,
in the same approximation,

e 0
Le =Lm\
( ar >’=a0 L ( ar >’=ao

ad)i a¢m
L\ — =Ln\—F— ,
<6r )"=b0 L ( ar )’=bo

where L; is defined in eq. (2.2). Inserting eqgs. (2.9) and
(2.10) into these equations and projecting onto each par-
tial wave, we obtain

—O0nLeEo(t)—(I+1)L.A(¢)

(2.12a)
and

(2.12b)

OM.(r, t)

—_—ZKlILmIL)( o )r=an (2.13a)

and

-1
(?) lLiD,(t)=Z<l|Lm|L>(M) ,
L r=by

0 ar
(2.13b)
where
Em d
(llelL>=<l — L>—+<l|a§n”lL> (2.13¢)
47 dt
<1 & L>=§f.+_15”8‘“(9’ D p,(cos 6) Py (cos )
4n 2 Jy 4nm
X sin 6 d6 (2.13d)
and
<1 ol L>=31—2J1SO [am(f), t)+$L“$’ 2
X P;(cos 8)Py (cos B)sinfdf.  (2.13¢)

Since the membrane is very thin, we expand the func-
tions M,(r, t) around r=a, as

M(r, t)=ayBi(t)+ Ci(t)(@—r)+ O ((a—r)). (2.14)

The two functions of time, B,(¢) and C;(¢), are necessary
to satisfy the boundary conditions, since the equation for
¢m is a second-order differential equation with respect to
r. In the limit of a thin membrane, higher-order terms in
the above expansion, eq. (2.14), can be shown to make
no contribution to the physical quantities to be
calculated in the following. Therefore the complicated
differential equation for ¢, need not be solved in this
limit.

We denote the ratio of the membrane thickness to the
vesicle radius as J,

ao— bo bo

5= 1 , 2.15)
ay [/

and we retain only the terms of the lowest order in J in
the subsequent calculation. The functions B, and C,; are
obtained from egs. (2.11), (2.14) and (2.15) as
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B(t)=A,(t)—E(1)on (2.16a)
and

C(t)=D(t)—A(t)+E(t)on)/6+0(°%. (2.16b)

Thus the intramembrane potential ¢, is completely deter-
mined. By using these results to eliminate B, and C;in eq.
(2.13), we arrive at differential equations for 4, and D,

SnLeEo(1)+(I+1)LA(1)
L
=%}<1‘3‘L>(DL(t)—AL(t)+Eo(t)5u) (2.172)

and

(U+1DL.A(t)+ILD)(t)=—0nLEo(2). (2.17b)

Subsequent discussions are based on these equations.
The effect of the membrane appears in eq. (2.17a) in the
form of L,,/d as

Lm_l Sma+am+1 agm
6 4ndat & 4n\aré)’

Since J is actually a very small number, &,/4nd can be
very large for cells and lipid vesicles.

(2.18)

2.3 Initial conditions

Equations (2.17) are first-order differential equations
with respect to time. To solve these equations complete-
ly, we need initial conditions. In the present problems,
the initial time should be regarded as the onset time when
the external field is applied. We assume that there is no in-
itial charge distribution at either the inner or outer sur-
face of the membrane. We call the solution obtained
under this assumption the induced electric field. If there
is intrinsic charge distribution on the membrane, we
should add the electric field associated with this charge to
the induced field. As we consider only spherical vesicles,
such an intrinsic electric field is a radially directed vector.
The electric force calculated by the use of the Maxwell
tensor consists of the force originating purely from the in-
trinsic field (which should be balanced by the internal
force of the vesicle), the force originating purely from the
induced field (which is our present concern) and the force
originating due to the interference between the two fields.
In the case of a homogeneous membrane, this in-
terference force is of a dipole type and gives rise to the
translational motion of the vesicle. However, since we
are only interested in the quadrupole deformation, this
type of motion will be ignored. If the initial state of the
membrane is inhomogeneous, namely, the initial values
of en and/or o, depend on 6, forces of a quadrupole and
higher multipole types can be generated from the intrin-
sic electric field. We expect such inhomogeneity to be
rather small and neglect these forces.

The condition that there is no initial charge on the sur-
face leads to the equations

8eE'enzgml'Z‘mn and 8iEin=8mEmn (219)

on the outer and inner surfaces, respectively, at the initial
time (#=0). These conditions become, in the lowest order
of deformation g(@, ),
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€m

83511E0+8e(1+ l)A/= Z <l 5
L

L>(DL_AL + 011 Ep)

(2.20a)

Ee(l+ l)A1+8ilD1= —&.0n Ey. (220b)

Here all the quantities are evaluated at =0.

2.4 Electric force and transmembrane potential

The forces acting on the vesicle are calculated from the
Maxwell stress tensor. The outward normal component
of the force per unit area of the vesicle surface is given as

Fn=(a(%/8n)[8e(E§n_Egl)_Ei(Eizn_Eizt)]' (2'21)

Here the limit (6—0) is already taken and Ejp, and Ej are,
respectively, the normal and tangential components of
the electric field Es(f8=1i, e) evaluated on the surface of
the vesicle. The tangential component of the force is
assumed to be balanced by the stretching force of the
membrane and not to contribute to the deformation."”?
The presence of the vesicle membrane imposes the con-
straint that the surface area remain constant. This con-
straint appears to justify the above assumption concern-
ing the force balance. In refs. 5 and 6, which deals with
the case of liquid droplets, the local balance of forces is
not explicitly considered, and the static deformation is de-
termined by minimizing the sum of the electric and sur-
face energies. However, it may be rather difficult to ex-
tend this approach to calculate the static deformation of
a vesicle and even more difficult to apply it to time-depen-
dent cases.

The transmembrane potential V is given, in the thin
membrane limit, by

V=¢.(r=ao) —¢i(r="bo)
=a, Ii [—Eo(t)on+Ai(t)—D(t)]P; (cos ). (2.22)

§3. Dynamics of Homogeneous Membrane

3.1 General formulation

In the present work, we discuss only the case in which
the membrane of the vesicle is homogeneous and &, and
on are the same everywhere in the membrane. Further-
more, &, and g, are assumed to be independent of time.
The more complicated situation in which electroporation
takes place will be discussed elsewhere.

The assumption of constant &, and o, leads to great
simplification, since contributions from higher
multipoles other than the dipole vanish (4,=D,=0 for
/>1). This is because the off-diagonal matrix elements of
&m and oy, vanish (i.e., {/len|LY>=¢ndy and {/lon,|L>
=001 ), hence equations determining A, and D, for />1
in egs. (2.17) and (2.20) are decoupled from those involv-
ing A, Di, and the external field Ey(¢). By omitting the
suffix /=1 (A=A, and D=D,) for simplicity, we rewrite
eq. (2.17) as follows:

_LeEO(t) ) (3 1)

S(aprar 2 (5~ 6 12azomio

with
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S 1 ( 2¢., & ) (3.22)
= .2a
4n \2e.+enm/d, —ém/d
and
20.6) G
Z=[ ) . (3.2b)
20’e+0'm/5, -am/da

The solutions of the homogeneous equation associated
with this equation are easily found by making the
substitution A(¢)=exp (—At) and D(t)=d-exp (—At)
in eq. (3.1) and solving the simple eigenvalue problem
given by

det(—4;S+2)=0, (—/ljS+Z)(;)=O. 3.3)

Then the general solution of eq. (3.1) is written as
A1) (A)
[D(t))_ (Ds(t)

X exp (—Azxt),

)+c(l) —“+c(1j
1dl exp ( 1) 2d2

(3.4)

where A (¢) and D,(¢) are a special solution of eq. (3.1).
The unknown coefficients C; and C, are determined by
the initial conditions, egs. (2.20). These conditions are ex-
pressed as

(Ei—e)(Em/ 0) —Eike
(&i+2¢e)(en/ )+ 266,
_ —3¢c(en/S)

T @+ 2e)(en/ 0) + 2616

The electric force calculated from eq. (2.21) consists
only of monopole and quadrupole components in the
case of a spherical vesicle having a homogeneous mem-
brane. Since we attempt only the lowest perturbative
calculations concerning the deformation and since the
monopole deformation is regarded to be of a higher
order, as was discussed in ref. 8, only the quadrupole
component of the force is of relevance here and is given
by

A@O)=

Ey(0) (3.5a)

D(0) Ey(0). (3.5b)

F,=(a}e./6m)Q(t)P,(cos §)+monopole, (3.6a)
where
O()=Eo(t)*+Eo(t)A(1)+(5/2)A(1)*— (&i/ &)D(2)*.
(3.6b)

This force is then inserted into the equation of motion
of the vesicle, as was discussed in detail in ref. 7. We ob-
tain the equation of motion for g, defined in eqs. (2.8a)-
(2.8¢) as

d?g,/de?+2I dg,/ di+Krg:=kQ(1), (3.7a)

where I' and K, represent, respectively, the fluid
resistance and the restoring force divided by the inertial
term. The explicit forms of these coefficients are given in

ref. 7. The coefficient k in eq. (3.7a) is given as
k=e./2nvpyai, (3.7b)

where v is the mass factor and p,, is the mass density of
the medium (see ref. 7 for details).
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3.2 Deformation in a step-function field

In this subsection, we consider the vesicle deformation
when a constant field Ey(?)=FE, is applied at time r=0.
Since the electroporation is not considered here, we treat
only the situation of a weak field or the initial stage under
a strong field. It is important to realize that the electric
properties of the membrane appear only in the form of
&m/d and 0,/ J. Since J is defined as the ratio of the mem-
brane thickness and the radius of the vesicle [eq. (2.15)],
it is actually very small; consequently, €,/6 is much
larger than €. and/ or ¢;. In fact, the ratio (¢./d)/ e turns
out to be of the order of 10? or greater for most cells and
large liposomes.

In the limit &,/0 > &.(&), the solutions of eq. (3.3) are
approximately

,11=1/r~in—5( 20,0 +ﬁ> (3.82)
Em 20e+0i )
and
2= i (20.+0). (3.8b)
2&.+ &

It should be noted that A, is independent of the proper-
ties of the membrane and 1/, is representative of the
characteristic time of the media surrounding the mem-
brane. In contrast, 1/, is proportional to &,/J and
should be regarded as the characteristic time of the mem-
brane placed in the media. Since o, /d for cells and
liposomes is at most of the order of ., 1/4, is much
smaller than t=1/A,[(1/42)/(1/ 1)) =O(g.5/&w)]. Thus

while the mode associated with the former dampens very

quickly, the effects of the slow mode 1/, are expected to
show a visible influence on the deformation dynamics in
certain favorable situations, as is discussed later.

A special solution of eq. (3.1) in the case of a static elec-
tric field Eo(¢)=E, is easily obtained as

_ (gi—0a)(on/d)—0;
_(ai+20e)(0m/5) +2a,°

(3.9a)

S

and
. —30i(on/d)
T (6i+20)(0m/ ) +20; "

S

(3.9b)

(a)

0 20,

n

(b)
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This solution corresponds to an asymptotic solution,
namely A=A (1= ) and D;=D(t= ).

In the remaining part of this subsection, the case of an
insulating membrane (6,=0) is discussed. The asymp-
totic values are A,= —(1/2)E, and D,=0, corresponding
to the vanishing electric field inside the vesicle and to the
vanishing normal component of the electric field at the ex-
ternal surface of the membrane. Imposing initial condi-
tions (3.5), we obtain the complete solution from eq.
(3.4). However, its approximate solution is sufficient for
the usual case of (en/J)/€. > 1 and is given as

A(t)/Ey= —l+—3a—ie“"+ Coe ™™ (3.10a)
2 20it+40. )
Oe
D(t)/Ey= — e M4 Ce ™, (3.10b)
o +20.
where C,=3(&i0.—€.0:)/ [2ei+ &.)(0i+20.)].
At t=0, A(0)/Eo~(ei—e.)/(ei+2¢e.) and D(0)

/Eo=~ —3¢./(e;+2¢.). After a short time ¢, satisfying the
condition 1/A,« #,<« 1/A,, the fast mode vanishes and A4
and D attain their extrema, A(t)/Ey=(c:—a.)/(gi+20¢)
and D(t)/ E;~ —30./(0;+20.). Afterwards, A and D ap-
proach the asymptotic values (3.9a, b) exponentially.
Function D is always negative, namely the electric field in-
side the vesicle, E;, is in the same direction as the applied
field. It is important to note that the function 4, on the
other hand, behaves qualitatively differently for g;<o.
and for g;<g.. If gi<0o., A remains negative. But if
;> dg., A becomes positive during a certain initial period
of time before it decays eventually to the negative value
of —E,/2. In Figs. 1(a), 1(b), and 1(c), we show ex-
amples of equipotential surfaces. Figure 1(a) shows the
case for ¢i/0.=0.2 at the time t=4/1,, while Fig. 1(b)
shows the case for g;/g.=2 at r=4/A,. At this time, the
effect of the fast mode nearly reaches maximum. Figure
1(c) shows the case at f=0o0, where the potential shape
does not depend on the ratio i/ o..

The quadrupole component of the electric force is de-
termined by inserting eqgs. (3.10) into Q(7) defined by eq.
(3.6b). Corresponding to the values of 4A(¢) and D(¢) at
specific times discussed above, the values of Q(¢) are

0(t=0=(9/2)Edl(ei—¢)/ (ei+2e)’ 20 (3.11a)

(c)

o
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Equipotential surfaces. It is assumed that ¢;=¢, and g,,=0. Length is given in units of the radius of the vesicle: (a) for

0i/0.=0.2 and at t=4/A,, (b) 6;,/3.=2 and at t=4/A,, (c) t=0.
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O(t)=(9/2)E¥ai—Qai/e.— 1)all/(ai+20.)* (3.11b)
for 1/A,« t<«1/A; and
9 20, 507 —8(ei/ )0l
t :_EZ 1— — At =2t
A= Es ai+2a. (0i+20.)
(3.11c)

for t=1/A,. The time dependences of Q(¢) are shown in
Fig. 2 for various values of the ratio x=g;/ g. in the case
of &=¢.. The abscissa indicates the values of the time in
units of t=1/1,, namely the characteristic time of the
slow mode. The ordinate indicates the value of OQ(¢)/ E ¢*.
The bottom curve in the figure corresponds to the case of
0/ 6.=0, and the other curves from the bottom upwards
correspond to the cases of gi/6.=0.2, 0.5, 1, 2, and 3, re-
spectively. It should be noted that the quadrupole force
at =0 is nearly zero, Q(0) =0, in the usual case of &= &..
After a very short time up to about £, the sign of Q(¢) is
determined by whether a;/0. is greater or less than
(ei/e.—1)'?=~1, as one can see from eq. (3.11b).
Therefore even if the membrane is assumed to be a
perfect insulator, the sign of the quadrupole force
depends crucially on the ratio of the conductivities,
oi/ g.. As the time passes, the contribution from the fast
mode vanishes quickly and the force factor Q(¢)
develops, as is given in (3.11¢). It gradually approaches
the asymptotic positive value of (9/8) E3 irrespective of
oi and o.. In the case of Q(#;) <0, the sign of Q(¢) changes
at the time z.=7In [{x+(8&/e.—4x?)"?}/(x+2)], with
x=a;/a., as is easily derived from eq. (3.11c). We see
from this figure that for a;/c.<1, the force factor Q(7)
remains negative for an appreciable amount of time,
<0.357.

The dynamics of the vesicle is determined by eq. (3.7).
Therefore if Q(¢) is negative, the deformation becomes
oblate, g, <0. Equation (3.11) shows that for decreasing
values of i/ g., O(¢) becomes more negative and, at the

2
Q/E,

00 o1 53 03 0.4 05 06
t/t

Fig. 2. Time dependence of the force function Q(¢)/E 2. It is assumed
that &=¢, and 6,,=0. Abscissa denotes 1,7=¢/7. The curves from
the bottom to the top correspond to ¢;/6.=0, 0.2, 0.5, 1, 2, and 3, re-
spectively.
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same time, remains negative for a longer time (z. large).
This dependence on x=g;/ a. is clearly exhibited in Fig.
2. For transient oblate deformation to be observable, x
should be small. In addition, one needs a sufficiently long
characteristic time 7. These conditions may be satisfied
by large liposomes containing a low-salt solution as the
internal medium.

In the case of the step-function field, Eo(¢)=Eo(t=0),
the membrane potential in eq. (2.22) is given as

V=—(3/2)Eyao[1 —exp (—t/1)] cos 6. (3.12)

As we have assumed an insulating membrane,, the
quadrupole force given in (3.11) is valid up to the time of
electroporation #,. The time ¢, is obtained by equating the
membrane potential at #=0 with the threshold value of
the potential difference for electroporation V1p, and is ex-
pressed as

ty=—1ln(1—E,/E,), (3.13)

where E, is the critical field and E,=2V+p/3a. For a
strong pulsed field (E;> E}), the time ¢, is of the order of
the characteristic time 7. Therefore the dynamical
behavior of the vesicle in a strong step-function field in-
volves not only the dynamics of the insulating membrane
but also that of the conducting membrane, which has yet
to be studied.

3.3 Alternating field

As is discussed in the previous subsection, qualitative
features of the time development of the quadrupole force
(3.11) differ markedly depending on whether the ratio
oi/o. is greater or less than (2¢/e.—1)"/2. However,
many biological cells have a rather short characteristic
time, 7, of the order of 0.1 us. Therefore, experimental
determination of the quantities such as o; and &n/4mnaod
from the deformation under a step-function field would
be difficult except possibly for large cells or large
liposomes.

Instead of a step-function field, an alternating field can
be used to perform these tasks. It will be shown that stu-
dying the steady state of the vesicle deformation induced
by an alternating field yields information about the
above quantities. It is elementary to obtain the steady-
state solution of eq. (3.1) for the alternating field Eo(¢)
=FEjexp (i Q2t). Inserting A(t)=Eo</ exp (iQt) and
D(t)=Ey9 exp (i 2t) into eq. (3.1), we obtain the solu-
tions for the complex coefficients & and 2 as

— (i Q/4n)e.—a. )
(i Q/47)(Em/O— )+ Om/S—0ac)
(3.14)

(&{j_ iQS+2 _l(
S |=dest

where the matrices S and 2 are defined in egs. (3.2a) and
(3.2b). We expect some interesting results when 1/ is
near the characteristic time of the membrane, 7 given in
eq. (3.8a). Since the characteristic time of the dynamical
motion of a vesicle is generally much larger than 7, it is
sufficient to consider only g,, which is g, averaged over
the period of the applied field. Hence, the dynamical
equation of the vesicle (3.7a) is reduced to the following
simple equation,
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§.=(k/K>)Q=(ade.E/864nK)q,

where x is the modulus of elastic curvature of Helfrich?
and g is related to the time average of Q(#) and is written
as

(3.15)

1 _ 1 Q 21/ Q
qu%Q:E_(Z)ESO () de. (3.16)
From eqgs. (3.6) and (3.16), g is shown to be
g=1/2)1+Ref)+ 5/ A 12— (&/2e) D% (3.17)

In the following, we will limit our discussion to the case
of an insulating membrane [0, =0, or ./ 5« (g; or a.)].
As &,/ 0 is much greater than &. and ¢;, we neglect higher-
order terms in eq. (3.14), insert the resulting expression
into eq. (3.17) and obtain the explicit form of q as

91 Q?
=iroai\ o) (3.18)

where
1 Q&/e.—Dai-oi
Q2 ' (o.ta/2)

From these equations and eq. (3.15), we observe the
following.

() If &/e.<1/2 or ai/a.>2¢&/e.—1)"%, then 1/Q?
is negative. Thus g>0 and §,>0 irrespective of Q (pro-
late deformation).

() If oi/0.<(Q&/e.—1)"% then 1/Q?% is positive.
Therefore for Q> Q., g is negative and the deformation
is oblate (§.<0). For Q< Q., the deformation is prolate
(9.>0). We call Q. the critical frequency. In Fig. 3, the
dependence of 1/Q. on the ratio ai/c. is shown for
&/€e.=0.8, 1.0 and 1.2. When the angular frequency 2 is
increased through Q. in case (ii), the vesicle undergoes a
change in the type of deformation from a prolate shape
to an oblate shape. It is worthwhile to note that the ratio

(3.18a)

10
0.8 1.2
£
a
9
\ O.SL 1
—
0.4}
€j/€,=0.8
o2}
00 .
00 0.2 0.4 06 08 10 12
X
Fig. 3. The dependence of the critical frequency on the conductivity

ratio. Ordinate denotes 1/7Q2, and abscissa x=0,/ag.. The curves
from the inside to the outside correspond to ¢;/&.=0.8, 1 and 1.2.
g,=0 is assumed.
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between o/ g. and (2¢;/e.— 1)'/? is crucial in determining
the type of deformation, in accord with the results for
the step-function electric field treated in the previous
subsection.

So far, the discussions are based on the steady-state
solution, eq. (3.15), of the dynamical equation (3.7a).
Additional information is obtained by analyzing the tran-
sient phase. By averaging eq. (3.7a) over an oscillating
period of the applied field 27/ and by assuming that
this period is short enough for the inertial term to be
negligible, we obtain the time-averaged dynamical equa-
tion

2I'dg./dt+ K, §.=kE3q, (3.19)
where
Q (+7/Q
!72(1)=2—S g2(r")de’. (3.20)
/A t—n/Q
The solution of this equation is
G2(t)=[1—exp (—t/)]1G2, (3.21)

where ¢ is the time after the onset of the alternating field.
The relaxation time ¢, is expressed as

t.=K,/2I'="T12k [ ya}, (3.21a)

where K>, I, and y are given in ref. 7. As is discussed
there, the quantity y is defined as the coefficient of fluid
resistance which is assumed to be proportional to the
membrane velocity component normal to the vesicle sur-
face. Therefore, measurement of the relaxation time
allows the estimation of y.

3.4  Analysis of steady-state measurement

From the point of view of experimental measurements,
it is preferable to describe deformations by means of the
radius parallel to the applied field, r(6=0)=ao(1+g.),
and the radius perpendicular to the field r(d=n/2)=ao
(1—g»/2). Therefore we introduce a quantity called the
elongation modulus, &, defined as

_r(0=0)—r(9=7z/2)_3§2/2
B r(@=0) 1+,
g. in the denominator is neglected since the present
theory is applicable only to small deformations (1&] « 1).

From eqgs. (3.15), (3.18) and (3.22), & is approximately
given as a function of Q by

Q ———1— I—Q—2 0
é( )_1+T292( Q%)é( )'

=~3¢,/2. (3.22)

(3.23)

where

£(0)=e.alE}/ 108nk. (3.24)

A typical value for k, the curvature elastic modulus of
the membrane, is 5X 107" erg (ref. 1; we refer to this
value as xy). For this kg and &.=81 (the dielectric con-
stant of water), £(0) is expressed as

éH(0)=1.5x< E, )zx( ao )3.
10 V/cm 30 um

In Fig. 4, we show the dependence of £(2)/&£(0) on 2 for
various values of x=0,/0.(=0, 0.2, 0.4, 0.6, 0.8, 1, 1.5,

(3.24a)
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Fig. 4. The dependence of the elongation modulus £(£2)/&(0) on 12,
the product of the characteristic time and the angular frequency of
the applied field. Abscissa shows the values of log,, 72. The curves
from the bottom to the top correspond to the case of x=g;/7.=0,
0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, respectively. The curve for x= 00 is iden-
tical to the top straight line, £(2)/£(0)=1.0. ¢=¢, and 0, =0 are
assumed.

2) by semilog plots.
A few noteworthy properties are immediately derived
from eqs. (3.23) and

(1) EA/T)=[£(0)+&()1/2, (3.252)
2 £()=0, (3.25b)
() x/Kku=E&u(0)/£(0)=C,u(2)/E(Q). (3.25¢)

Once & is experimentally determined as a function of Q,
the above relations may be utilized to facilitate the
analysis of the data.

(1) The characteristic time of the membrane 7 is esti-
mated as the inverse of the angular frequency at the mid-
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point of the transition from a high £[=£(0)] to a low
E[=¢()].

(2) The critical frequency Q. is determined as the fre-
quency at which no deformation takes place (£=0).
From eq. (3.18a) and the knowledge of 7 above, the con-
ductivity ratio x=o0;/0. is determined, provided that
&i/ €. is assumed to be known. In most cases, the relation
&=¢&. holds and x can be estimated from Fig. 3. The value
of x, combined with o. determined from an independent
measurement, yields the value of the conductivity inside
the vesicle g;. Furthermore, the membrane capacitance
per unit area C,=¢&n/4maod can be obtained from o, a;
and 7, since 7 in eq. (3.8a) is reduced to
aCn(1/0i+1/2a.) for 6,=0.

(3) The actual value of the curvature elastic modulus
K of the membrane is determined by the use of the simple
scaling relation (3.25c). Measurements of £(£2) at several
frequencies will give a reliable estimate of k. It should be
emphasized that x so determined is an effective curvature
elastic modulus. In the case of a cell, k reflects the elastic
properties of the cell as a whole, including those of
cytoskeleton and cytoplasm.

The present theoretical calculations are based on
idealized assumptions. However, we hope that the results
obtained pave the way to a novel method of determining
the properties of cells and a further development in the
theoretical treatment of cell dynamics.
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