Supplement

Materials and methods
Observation of rotation

Biotinylated complex was frozen with liquid nitrogen and stored at —80°C before use.
The preparation of a flow chamber to observe rotation, blocking the surface by bovine serum
albumin, immobilization of the complexes to glass surface through his-tag, and attachment of
40-nm gold beads through biotin-streptavidin were performed as [1,2]. Rotation was initiated
by infusion of buffer A (50 mM HEPEPS-KOH, pH 8.0, 50 mM KCI, 5 mM MgCl,)
containing 2.5 mM creatine phosphate, 0.2 mg ml™' creatine kinase was infused and rotation
was observed at 25°C by laser dark-field microscopy on inverted microscope [1]. Beads
images were captured by fast-framing CMOS camera at 8000 frames s for 2-8 s. The
time-averaged rotation rate was determined from >100 revolutions (2 mM, 200 uM ATP),
>30 revolutions (20 uM, 2 uM ATP), or 7 revolutions (200 nM ATP). For rotation assay of
oi3Bsye at 2 uM (or 200 nM) ATP, 100 nM biotinylated o33ye was preincubated for 30 min in
S20 pM (or 2 uM) Mg-ATP in buffer B (50 mM 3-(N-morpholino)propanesulfonic acid-KOH,
pH 7.0, 50 mM KCI) containing 2.5 mM creatine phasphate and 0.2 mg ml"' creatine kinase.
The solution was diluted ten-fold with buffer B to adjust asB3ye at 10 nM and ATP at 2 uM
(or 200 nM) and immobilized on the glass surface. For long-time observation at 200 nM ATP,
rotation of polystyrene beads of 200-nm diameter attached to € subunit (o333y€) or y subunit
(a3PB3y) was observed at 25°C by bright-field microscopy and recorded on digital video
recorder at 30 frames s [3]. For long-time observation at 2 mM ATP, rotation was observed
by dark-field microscopy and recorded on fast-framing camera at 150 frames s .
Preincubation with 2 uM Mg-ATP was performed as described above except that 2.5 mM
phosphoenolpyruvate and 0.2 mg ml” pyruvate kinase were used for ATP-regeneration
system. Rotation was initiated by infusion of the buffer A containing ATP-regeneration
system consisting of 2.5 mM phosphoenolpyruvate, 0.2 mg ml' pyruvate kinase. The

centroid of beads image was calculated as described [4].
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Legend of Figure S1

Histograms of durations of the dwell at (A-C) 80° and (D, E) 0°. Data were collected from
rotation observed for several seconds. Solid lines are the simulated curves with (A-C)
constantx {exp(-k;t)-exp(-kot)} and (D, E) constantxexp(-kt). Experimental details are
described in Materials and Methods.
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